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We investigate the noisy Burgers equatidfardar-Parisi-Zhang equation in+1l dimensiony using the
dynamical renormalization groufpo two-loop ordey and mode-coupling techniques. The roughness and dy-
namic exponent are fixed by Galilean invariance and a fluctuation-dissipation theorem. The fact that there are
no singular two-loop contributions to the two-point vertex functions supports the mode-coupling approach,
which can be understood as a self-consistent one-loop theory where vertex corrections are neglected. There-
fore, the numerical solution of the mode-coupling equations yields very accurate results for the scaling func-
tions. In addition, finite-size effects can be studied. Furthermore, the results from exact Ward identities, as well
as from second-order perturbation theory, permit the quantitative evaluation of the vertex corrections, and thus
provide a quantitative test for the mode-coupling approach. It is found that the vertex corrections themselves
are of the order 1. Surprisingly, however, their effect on the correlation function is substantially smaller.

PACS numbe(s): 05.40:+], 64.60.Ht, 05.70.Ln, 68.35.Fx

[. INTRODUCTION Dynamic scalingThe interface fluctuations are character-
istically scale invariant, i.e., the height profile obtained by a
The Kardar-Parisi-Zhan¢KPZ) equation represents one self-affine rescaling h(x,t) =b™Xh(bx,b%) is, in a statisti-
of the most prominent models describing nontrivial nonequi-cal sense, equivalent to(x,t). As a consequence, for suffi-
librium dynamicd1]. This model equation constitutes one of ciently largex, andty, such that the process is already be-
the most thoroughly studied continuum theories of kineticyond the initial transient region, the correlation function
roughening. It describes the height fluctuatidr(x,t) of a

stochastically growrd-dimensional interface with a growth C(x,1) = {[N(X+Xg,t+1to) — (X, t0) 1?) 1.3
rate v (Vh)=\(Vh)?/2 depending nonlinearly on the local
orientation of the surface, obeys the generalized homogeneity relatian-(x|)
oh A C(x,t)=b~2XC(bx,b%). 1.4)
E=vV2h+§(Vh)2+ n(x,t). (1.1 (x.t) ( ) (

Upon choosing the scaling parametet 1/x we obtain the

The (¥V?h) term mimics a surface tension, and acts todynamlc scaling form

smooth the interface, while the uncorrelated Langevin noise

7(X,t) tends to roughen the interface and entails the stochas- C(x,t)=x2Xé(t/xZ). (1.5
tic nature of any growth process. Its first moment vanishes, o _ .
and its second moment is given by In the asymptotic limits — 0 andx— oo, the scaling function

é(t/xz) displays power law behavior and hence

VN ) Y 4
(n(xt)p(x',t'))=2D &V (x=x")8(t-t"); (1.2 Ax?X  for t—0

coxy= Bt?XZ for x—0. (1.6

note that in general the coefficientandD are not related in
any simple manner, in contrast to near-equilibrium situations
where Einstein relations connect damping constants andlhe transverse wandering of the interface may be character-
noise correlations. ized by a perpendicular correlation lengttE, (x)

o« /C(X,t=0)xxX with theroughness exponent The tem-

poral increase of surface roughness is described by a parallel

*Present address: Department of Physics—Theoretical Physiceprrelation IerIch‘fH(t)octl/Z with the dynamic exponent.z

University of Oxford, 1 Keble Road, Oxford OX1 3NP, United Many growth phenomena show the above dynamic scal-
Kingdom. ing of the interface fluctuations, but with values for the criti-
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cal exponents different from those obtained for the KPZ Another model of surface roughening, which is governed

equation. Nevertheless, the KPZ equation has become th®/ the same nonlinearity as the KPZ equation, is the

starting point for our understanding of nonequilibrium dy- Kuramoto-SivashinskyKS) equation17]. In contrast to the

namics and strong-coupling behavior. KPZ equation the KS equation is completely deterministic:
Phenomenology of the KPZ equatiofhe phenomenol-

ogy of the KPZ equation is now well knowi2]. Below the

lower critical dimension ¢g=2 there appear two renormal- Jh A

ization group(RG) fixed points, namely, an infrared-unstable i vV?h—V4h+ E(Vh)z, (1.8

Gaussian fixed point and an infrared-stable strong-coupling

fixed point describing a smooth and a rough interface, re-

spectively. For dimensiond>2 there exists a nonequilib- and is characterized by a band of unstable modes at small
rium phase transition from a weak-coupling phase for smalyaye vectors(Note thatv>0.) Numerical simulations of the
effective coupling constanig=\?D/»*, where the nonlin-  giscretized one-dimensional KS equation have recently dem-
earity is irrelevant(in the RG sensg to a strong-coupling  onstrated that the large-scale dynamical correlations are de-
phase which seems to be inaccessible through perturbativgiped by the(1+1)-dimensional KPZ equatiofil8]. A
methods2,3]. The scaling exponents in the strong-couplingderivation of the KPZ equation from the KS equation has
phase have been determined by numerical metb@8$and 3150 been given in Ref19], where the effective parameters
self-consistent mode-coupling approach@s8]. The results  f the KPZ equation have been determined from the numer-
obtained from mode-coupling theory suggest the existence GEs of the microscopic chaotic dynamics of the KS equation.
an upper critical dimension gi=4 [9]. This result is sup-  For d=2, however, the resulf®0] are still controversial.
ported by functional RG calculatiorj40,11] and renormal- Recently, Goluboviand Wang succeeded in mapping the
ization group arguments,12]. In the numerical simulations, equilibrium  statistical mechanics of a two-dimensional
however, the dynamic critical exponentfor the transient smecticA liquid crystal onto the nonequilibrium dynamics
roughening of an initially flat interface is found to be smaller of the (1+1)-dimensional stochastic nonlinear KR#@oisy
than z,=2 for all dimensions accessible to a numericalgyrgerg equation[21]. Kashuba has shown that there exists
analysis[5], i.e., there is no indication of any upper critical 5 one-to-one relationship between the Hamiltonian describ-
dimension. This discrepancy between mode-coupling theorg the nonlinear elasticity of a two-dimensional smedtic-
and numerical results has yet to be resolved and constitutgguid crystal and the Hamiltonian characterizing the long-
one of the most important issues of current theoretical rerange spin fluctuations in a two-dimensional planar ferro-
search. o magnet subject tqtwo-dimensional dipolar forces[22].
Mapping to other modelsThe KPZ equation is closely These relationships thus provide an interesting, exact ap-
related to a variety of other problems ranging from fluid yroach to studying the anomalous elasticity of smedtia-
dynamics governed by the Burgers equafi®8] to equilib- g crystals, as well as the spin fluctuations in the ordered
rium systems with qu_enched disorder, namely, directed P0|thase of a dipolar planar ferromagnet in two dimensions,
mers in random environmenf44,15. Most of these map- provided the corresponding KPZ growth model can be
pings and relations are strictly valid for the one-dimensionakg)yed exactly, or at least to a high degree of accuracy.
case only. In order to assist the reader with the transfer of the A number of somewhat more exotic relationships have
results obtained in the main part of this paper to related sysyeen found very recently, e.g., the kinetics of the annihilation
tems, we provide a short account of some of the most IMpOrprocessA+B—0 with driven diffusion was mapped onto

tant issues. . _ ~ the (1+1)-dimensional KPZ equatiofi25], and the formal
The transformatiow= —Vh leads to a Langevin equation equivalence of the continuum limit of the Heisenberg equa-
for a randomly stirred fluid, tion of motion of a certain spin-1/2 chain with the Fokker-

Planck equation corresponding to the noisy Burgers equation
v was demonstratel®6]. Besides these various mappings and
— A (V- V)V=vV— V(X 1), (1.77  relationships, which are valid ifL+1) dimensions only, the
ot KPZ equation is also closely related to the dynamics of a
sine-Gordon chaii23], the driven-diffusion equatiofi24],
which in the case. =1 represents d-dimensional generali- and directed paths in random media].
zation of the noisy Burgers equatipb3]. The long-time and Invariances of the noisy Burgers equatiofihe one-
large-distance behavior of the Burgers equation, describingimensional KPZ equation is special in several ways. First,
the dynamics of a vorticity-free velocity field, and the there is a huge list of mappings onto related models as de-
Navier-Stokes equation, characterizing an incompressiblecribed above. Hence any advances in understanding the
fluid, have been analyzed by Forster, Nelson, and Stephen growth model will have broad implications for many physi-
the framework of dynamical renormalization group theory tocal problems. Second, the noisy Burgers equation has two
one-loop order[13]. These authors have shown that theimportant “symmetry” properties, namely, Galilean invari-
fluctuation-dissipation theorem, valid th=1 only (see Ap- ance and detailed balance. The Galilean invaridis of
pendix A), together with a Ward identity resulting from the the one-dimensional hydrodynamic equati¢h?7) corre-
Galilean invariance of the fluid equation of motion, allows sponds to an invariance of the stochastic growth model with
the determination of the dynamic critical exponentin  respect to an infinitesimal tilt of the surfack—h+v-Xx,
d=1 to be exactlyz=3/2. Their RG analysis has recently Xx—Xx—\vt. As a consequence of this symmetry, one finds
been extended to two-loop ordgl6,2,13. that the amplitude of the nonlinearity is invariant under
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RG transformations, which in turn implies an exponent iden-and those obtained from numerical simulations for the KPZ
tity relating the roughness exponepto the dynamic expo- equation. In what follows, we will try to give a systematic
nentz, analysis of the mode-coupling approach using the field-
theoretic formulation of Langevin dynamif36—38§. In par-
Y+z=2. (1.9 ticular, the fact that there are no singular two-loop contribu-
tions to the two-point vertex functions in perturbation theory
Whereas the latter invariance is valid for any dimengipn in d=1 strongly supports the mode-coupling approach. As
the detailed balance property of the KPZ equations holds ithe infrared singularities, i.e., the exponemtsand y, are
d=1 only (see Appendix A It can be showr1] that the known exactly, the self-consistent treatment is expetied
Fokker-Planck equation corresponding to th@+1)- found) to reproduce the scaling functions to a high degree of
dimensional KPZ equation has the stationary solution accuracy. In addition, we shall analyze vertex corrections in

order to understand the range of validity of the mode-
’ Jh\2 coupling approach. Our explicit results for the vertex correc-
.’/gt(h)ocex;{ - ﬁf dX( &) ;

(1.10 tions, as obtained fronfexact Ward identities as well as
from second-order perturbation theory, allow for a quantita-
tive estimate of the systematic errors enshrined in the mode-
coupling approach. Since this specific type of self-consistent
‘treatment is used in many areas of theoretical physics, albeit
under different nomenclature, we hope that this work will

z=3/2. ; : AL X
. . . . hed light t licability, limitations, and bl
Scaling of the (*1)-dimensional KPZ equatiords a Zx?enzi%rns 'ght on its applicability, limitations, and possible

consequence of the above invariance properties of the non- Outline. The outline of the paper is as follows. In the

Ilnt_aar Lange"'r.‘ equano_(il.l), one can show t_hat the helght- subsequent section we summarize results from previous RG
helght correlation function obeys the following scaling law studies, discuss their relevance for the mode-coupling ap-
[27: proach, and provide those explicit results which are needed
in subsequent calculations. The formulation of the mode-

C(x,t)=Ax2XF()\\/Kt/xZ). (1.11 coupling theory is discussed in Sec. lll, as well as the solu-

tion of the self-consistent mode-coupling equations for the

The argument of the scaling function is now dimensionlesspoisy Burgers equation. In addition to the scaling functions

and the scaling function itself igniversal It acquires the in the thermodynamic limit, finite-size corrections are ex-

this implies that the roughness exponenkis 1/2, as if the
nonlinearity were entirely absent. Together with the expo
nent identity(1.9), one thus finds for the dynamic exponent

asymptotic form plored. The size of the vertex corrections is estimated from
the (exac) Ward identities stemming from Galilean invari-

1 for £—0 ance, as well as from the explicit two-loop perturbational

F(é)= (1.12 contributions. In the bulk of the present work, we shall refer

*\2x/z
(¢/297) for §—ee, solely to the(1+1)-dimensional KPZ equation; however,

whereg* is a crossover scale. The RG fixed point of theWhenever more general statementslidimensions are pos-

(1+1)-dimensional KPZ equation turns out to be a Strong_sil_)Ie, this restriction taﬂ=_ lis r_elaxed. We conclude With_ a

coupling fixed point. As discussed above, despite this facP'i€f summary and a discussion of some of the remaining

the roughness and the dynamic exponent are knewactly ~CPEN problems.

as a consequence of the particular invariance properties of

the one-dimensional case. The scaling functiof¢) has

been calculated using a nonperturbative mode-coupling ap-

proach[27]. Striking agreement with the results of direct

numerical simulation$28—3( were found. We start by reviewing some known results from perturba-
The nonperturbative mode-coupling approach essentialljonal renormalization group theofil,16,4, specializing to

consists in a resummation of the perturbation theory, such+1 dimensions. This section also contains the explicit ex-

that all propagator renormalizations are properly taken intyressions for the vertex corrections to the two-point vertex

account, while the vertex corrections are neglected. This isunctions to two-loop order. In this section, as well as in the

clearly a veryad hocand uncontrolled procedure; neverthe- Appendix, unrenormalized quantities are denoted by a sub-

less, mode-coupling theories have been remarkably successeript “0.”

ful in applications to many areas of condensed matter theory,

such as structural glass transitidi¥i], critical dynamics of

magnetg 32,33, binary mixtureg32,34], and other$34]. In A. Dynamic functional

all those fields, it has been found that mode-coupling theory e start with a brief description of the field-theoretical

is capable of describing experiments in a quantitative mantormulation of Langevin-type dynamick36,37. The sto-

ner. The factorization approximation in the above mode-nastic forcesy(x,t) obeying(7(x,t))=0 and Eq(1.2) can
coupling concepts is also known in the theory of hydrody-pe taken to be Gaussian distributed,

namic turbulence as Kraichnan's direct interaction

II. RESULTS FROM RENORMALIZATION
GROUP THEORY

approximation 35]. 1
The present work is motivated by this fact, and further- W[ n]“eXF{— — dde dtn2(x,t)|. (2.2
more by the striking agreement of the mode-coupling results 4Dy
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Using the equation of motioifl.1), we can eliminate the where

noise term; with an additional Gaussian transformation intro-

ducing Martin-Siggia-Rose auxiliary fields [38] the ensu-

ing probability distributionP[h] for the height fluctuations h=6F/8j andh=6F/5j. (2.5

may be further linearized, and thus the original nonlinear

stochastic equation of motion can be reformulated in terms

of a generating functiondP]: We finally note that the functional determinant originating in

the variable change from the noise fielgsto the height
o ) - - fluctuationsh serves to exactly cancel the acausal contribu-

Z[j,jl= f @[h]%[m]ex;{ Z1h,h] tions to the perturbation series, thus leaving only those Feyn-

man diagrams with correct time ordering in the response

propagator$36,2].

+fddxf di[jh+jh]|, (2.2)

with the Janssen-de Dominicis functional given by B. Two-point vertex functions and renormalization

We can now proceed to study the renormalization of the
KPZ equation in one dimension. As discussed in detail in
Ref. [2], the Ward identity stemming from the Galilean in-
variance of the Burgers equation shows that the nonlinearity
] 2.3 N =X\ does not renormalize. This leaves the renormalization

' ' of the surface tensioidiffusion coefficient vy and of the
noise correlation strengtb,, which may be inferred from
Correlation and response functions can now be expressed 3fudying the two-point vertex functiong,l'fn(d,») and
functional averages with weight eikp[h,h]}. Upon sepa- TI';y(q,w), respectively; because of the fluctuation-
rating the dynamic functional into a quadratic and a nonlin-dissipation theorem valionly) in d=1 (see Appendix A
ear part, a standard perturbation theory can be formulateghese coefficients are actually proportional to each other and
where the cumulant&y v of the correlation and response must therefore renormalize in the same way. In Appendix B,
functions are defined by functional derivatives of we list the Feynman diagrams and the corresponding analyti-
F[j.j]1=InZ[j,j] with respect to the sourcgsandj, respec- cal expressions fol';,(q,w) to two-loop order(second-
tively. Vertex functiondy  are then obtained from the cu- order perturbation theory in), specializing the results of
mulants by a Legendre transformation, Ref. [2] to d=1. Upon collecting these terms, splitting the
vertex functions into regular and ultraviolet singular parts,

Fﬁhzrff+F%iEg, eventually the following comparatively

simple results are obtained:

M evh
a0

,z["h',h]:fddxf dt[Doﬁ'ﬁ—F

No s
-3 (vh)

r['ﬁ,h]=—F[T,j]+fddxf dt(hj+hj), (2.9

Ffao) A4ng2ff Q7 - (2.6
iw+vog” 2vy  JpJkio+vo0% + 1002 G_[iw+ G2 + veG2 I[i 0+ voq2 + veG2 + vok?] | '
A A2 1
sing . 2 0 o .
2 =iw+ vog?+ :
T (@) =T+ v 2v, q plo+ Voqi-l-voqz,’ @7

here we have introduced the abbreviatians=(q/2)=p, 1 1
q .=q.=*k, and [,=/"Zdp/2m. Note that the singular v(g,w)= WRthh(Qaw)]: - Z—Dofhh(q,w), (2.8
term stems entirely from the one-loop diagréine expres-

sion involving only one internal momentum), while the  cqnfirming the validity of the fluctuation-dissipation theorem
ultraviolet singular two-loop contribution vanishes. The of Appendix A[2,16].

second-order term in the perturbation expansion thus yields |n evaluating those contributions which become singular
merely regular corrections to the scaling functions. The secgs the critical dimensiod,.=2 is approached, one has to be
ond relevant vertex function can be written ascareful to choose a normalization poiftiP) where either
I'ir(0,0) = —2DoRE I'fn(0, @)/ voa%], which allows us to  q or o is finite, in order not to interfere with the infrared
define the wave-number- and frequency-dependent diffusiosingularities, which would also appear as poles iad—2
coefficient as (for a more detailed discussion, see Ré®. and[12]). A
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convenient choice is the NRy=0, iw/2v=«? with
Jo=\2Dy/v§ one thus arrives at

. [ go 1
Ihh(d, o) = —2D0_1+ prm_, (2.9
d . [ g 1
a—qzrﬁh(q,w)ﬂ'ﬂg= Vo_ 1+ prm_ , (2.10

whereZ is the renormalization factor for bothandD. The

remaining singular integral is readily evaluated using the di

mensional regularization scheme

&

f 1 Cyu
pit’+p €

where Cy=T'(2—d/2)/2% 1792 is a geometry factor, and
C,=1/2. Note that in this evaluation dixed dimension
d=1, no expansion with respect éo=d— 2 was applied; the

: (2.1

latter parameter was merely used to effectively count the

singularities in the integrals that would appeardat=2,
when they are generalized to arbitrary dimensibnThese

ultraviolet poles may now be absorbed in renormalized qual

tities D=27D, and v=Zvq, with the renormalization con-
stant

£ 2 2e
. Yok” QoK
=1 g Tz 213
Defining the renormalized coupling
%
g_ ZZK’ (213)

we can now readily calculate Wilson's flow functions,

{(9)=kd,|oInZ=—g/8, (2.14

B(9)=«d,|og=9(d—2-2¢)=g(—1+g/4) (2.15

in d=1. Searching for zeros of thg function yields the
infrared-stable nontrivial fixed point

g*=4, (2.19
from which the critical exponents
x=-§(g*)=1/2, (2.17)

2,v)
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z=2+{(g*)=3/2 (2.18

can be deduced. Note that these explicit results fulfill the
exponent sum rulél.9); of course, as these exponents can
already be determined from this identity and the additional
constraint of the fluctuation-dissipation theorésee Appen-

dix A), this rather serves as a check for the calculations. Note
that the remarkable cancellation of the singular two-loop
contributions has been essential here from the diagrammatic
point of view.

In Ref.[2], the renormalization group approach is carried
out in arbitrary space dimension<Gl<4. Ford>2 an ex-
‘pansion with respect te=d—2 can be pursued, and was in
fact recently carried through to arbitrary order in the pertur-
bation series by Lssig[3]. Ford<2, on the other hand, one
may note that the fixed point coupling* ««d approaches
zero ford— 0, and the results may be cast into an expansion
about zero space dimensiph2].

C. Two-loop scaling functions

For later use, we now summarize the results from the
second-order perturbation theory once more, albeit with
some slight changes. First, we explicitly separate the zero-
and one-loop contributions, and the two-loop contributions
due to propagator and vertex renormalizations. Second, we
take ‘“self-consistent” propagators, i.e., we generalizg
and D, to a g-dependent quantity according to E@®.8);
however, neglecting its frequency dependence. This is in the
spirit of the Lorentzian approximation in mode-coupling
theory, to be discussed below; its formal advantage is that
the pole structure in the complex frequency plane remains
unaltered, and therefore the results from Appendix B may be
readily generalized. The zero- and one-loop contributions to
I'tn(9,0) thus readsee Figs. @) and 7b) below:

W ! . (219
U R e

@ _
Fﬁh(qao) - q2

similarly, the two-loop contribution due to propagator renor-
malization[Figs. 7c)—7(f) below] becomes

q2

+v(q-)g° ]2

)\4
(2p) _ 2
2P (q,0=— —Jf
mn (AO==95 | L a?

1
X — — (2.20
(4,92 +v(q,)9% +v(q-)g>

while the result for the two-loop contribution due to vertex
correctiong Figs. 1g)—7(j) below] is

T

( —
Fﬁh (Q!O) -

_q2)\4f f q7
p k(A% + (992 [1(G,)F2 + (G )T »(9.) % + »(G_)F2 +v(k)k?]

(2.29
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IIl. MODE-COUPLING THEORY AND VERTEX . .
CORRECTIONS S (K)=— vaf(f;kGO(K)CO(KQVf&k (3.6

In this section we study the mode-coupling approximation
for the Burgers equation. For readers not familiar with theis the one-loop renormalization of the “self-energy.” Simi-
dynamical functional approach discussed in the previous sedarly, the lowest order correction to the correlation function
tion, we start by a derivation of the mode-coupling equationis
using a perturbation theory for the equation of motion.

C1(K)=2Dy(K)|Go(K)/?, 3.7
A. Perturbation series and mode-coupling equations h
where
In Fourier space the equation of moti¢h1) reads

1

h(k, ) = Go(K, @) (K, ®) + Gg(k, )] (K, ) Dy(K)=D+ ZfQV(kOj;kCo(K—>Co(K+)V(k°f;k (3.9

1
+§G°(k’w)Jq MVf(T;k_h(h o )h(k_,0_), is the one-loop renormalization of the “noise spectrum.”

Unfortunately, such perturbation series diverge in the hydro-
(3.D dynamic limitk,w—0. One way to proceed is to perform a
renormalization group analysis. It turns out, however, that
where Go(k,w)=1/(vk?~iw) is the “bare propagator,” there is no fixed point that can be obtained in a controlled
VIO, = —\ky kg is the “bare vertex,” andk.=k/2+d, & expansion withe=2—d below d=2 dimensions[2].
w.=w/2+ . The noisez is assumed to be Gaussian andHence, a nonperturbative method is required to treat the KPZ
uncorrelated, given by the weight function E8.1). A small ~ Problem. One approximation which has been frequently used
external perturbatio(k,») has also been included in Eq. iS to replace the bare propaga®g and bare correlatdZ, in
(3.1), and will be used to generate the response functions=ds:(3.6) and(3.8) by the renormalized functions andC
Typically, the quantities of interest are the noise-averagedvhile keeping the vertex(®) unchanged. This is known as

two-point correlation function the mode-coupling approximatidier Kraichnan's direct in-
teraction approximationand it leads to the following closed
(h(K)h(K"))=C(K)8(K+K"), (3.2  set of integral equations:

and the noise-averaged linear response function ) ©)
S(K)= —f Vi, ik G(KOC(K )V, (39
5(h(K)) ¢
WZG(K)(S(K—K’), (33)
J 1

D(K)zD—i—Zf V(k(i);k7C(K,)C(K+)V(kO+>;k7, (3.10
where K,w) is abbreviated by K and §(K+K') Q
=(2m) 9189k +k')8(w+w'). These are special cases of

the general Green’s function where3, andD are defined byG andC through
Gmn(—P1i .. = PulKy: .. Ky G HK)=Gg '(K)—X(K), (3.1))
_9"(h(Ky)- - -h(Kp))e | 3.4 C(K)=2D(K)|G(K)|% (3.12

0j(Py)- - 6] (Ppy) _ _
Of course, as this procedure neglects any vertex renormaliza-
where the subscript denotes the connected part. In this tions, it constitutes a partial sum of the perturbation series
notation, the two-point correlation function is only, and asa priori no information is available about the
(h(K)h(K"))=Go A |K;K") and the linear response func- size of the missing contributions, it clearly constitutes an
tion is 5(h(K)) 8] (K') =G, (—K'|K). From Eq.(3.4), itis  uncontrolled approximation. Nevertheless, the mode-
clear thatG,,, .= 0. The above definition of the Green’s func- coupling theory has been quite successfully applied in many
tions is identical to the one used in the dynamic functionafreas of condensed matter theory, as mentioned in the Intro-
formalism (Sec. Il A). duction. It was first applied to the KPZ problem by van
One approach to studying the Green’s functi@hs, is ~ Beijeren, Kutner, and Spohf24] to get the scaling expo-
perturbation theory. Fov(®=0, Eq.(3.1) is just the linear Nentsy andz in d=1. Recently, the mode-coupling equa-
diffusion equation. Fow(?)#0, the solution of Eq(3.1) may  tions were solved _nume_rlcally to obtain Fh_e entire function
be obtained iteratively by a perturbation expansion in power&(k,) in 1+1 dimensions{27], and striking agreement
of V(©. For example, the lowest order correction to the re-With the scaling function obtained by direct numerical simu-

sponse function is Iation§[28] was fou_m_j(for details see Sec. Il C belowThis
result is very surprising and prompted us to study the mode-
G1(K)=Gy(K)+Gy(K)21(K)G(K), (3.5  coupling theory in more detail. In what follows, we will try

to give a systematic analysis of the mode-coupling approach
whereCy(K)=2D|Gy(K)|? is the “bare correlator,” and using the field-theoretic formulation of Langevin dynamics.
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[y AK[K1;K) =T a(Kq;Kp) S(K+K +K5), (3.19

The starting point of our study is the response function,

which can be formally obtained by differentiating E@.1)
with respect to the perturbatigrfK'). We obtain

Gpi(—K'|K)=Gy(K)S(K—K")
1 0
+=Go(K) | VI, G A—K'|K,;K_).
2 Q (kT

(3.13

Mode-coupling theory amounts to expressi@g, in terms
of the lower order function&,; ; and Gy ,.

In order to analyze the Green’s functions systematically,

[51(P1;Po|K)=Tp(Py;K)S(K+Pi+P,),  (3.20

then the self-energy becomes

2(K>=—va(k°3;kG(K_>C(K+>V<K+;K>, (3.2

where

G '(-K,)

V(K K)=T (K, ;—K)+W

1_‘b(K+ VT K)
(3.22

we turn to a functional integral method described in Sec. Il.

From the generating functional E(R.2) the Green'’s func-

denotes the “renormalized vertex function.” It will be useful

tions Eq.(3.4) can be easily obtained as the functional de-to write the vertex function in a slightly different form:

rivatives of F[],j]1=1InZ[j.j].

By taking derivatives of Eq92.5 and using Eq(2.4), it
is straightforward to relate the Green'’s functidag , to the
vertex functiond™, ,, e.g.,

I'1(PIK)=T"14(—P)6(K+P), (3.19

whereT'; 1(—P)=G~}(P). The two-point correlation func-
tion can also be easily found. It has the form of Eg12),
with

I dP1,Pa| )=T'5o(P1) 8(P1+Py), (3.1

whereI', o(P)=—2D(P). All higher order Green’s func-
tions can be written as products &f(K), C(K), and the
higher order vertex functions. For example,

G,1(P1;Po|K)=—G(K)I' A K|Py;Pp)G(—Py)G(—Py),
(3.19

G1APIK1;Kp)==G(K)G(K)T 1K1 ;Ko|P)G(—P)
—G(K1)C(K)T'1 AKy|K2;P)G(—P)
—C(K1)G(K)I'y AK2|K1;P)G(—P).

(3.1
Using Eq.(3.17 in Eq. (3.13, we obtain
Gy —K'[K)=G(K)8(K—K")=Gy(K)o(K—K")

—Go(K>va<k‘?;kG<K_>

X

C(K T3 AK_|K.;=K")

1
+ 56K T 4(K- K[ =K") [G(K)

(3.18

for the full response function. Note that it has the form

G(K)=Gy(K)+Gy(K)Z(K)G(K), where %(K) is the
self-energy defined in E¢3.11). If we write the vertex func-
tions as

Gil(K+)+Gil(_K+)
4D(K.)

V(K K)=To(Ky i =K)+

(3.23

The additional term does not chang€K) in Eq. (3.20)
because its poles, frol(K_) and G(—K,), are on the
same side of the complex frequency plane. Hence the fre-
quency integral for this additional term yields zero. Compar-
ing Eq. (3.2) with Eg. (3.9, we realize that the mode-
coupling equation becomes exactV(K ; ;K)=V(®.,. In
Sec. Il D, we will show that this equality in fact does not
hold. Yet, by exploiting a number of identities relating the
different vertex functions, we shall show that the correction
to V(K. ;K) is small in the limitK . —0. This is hopefully
the first step in understanding the puzzle of why the mode-
coupling theory works so well, at least in the case of the
noisy Burgers equation.

XK ;—K).

C. Numerical solution of the mode-coupling equations

In this section we present the numerical solution of the
(1+1)-dimensional KPZ equation. In view of the results
from the preceding section it is convenient to define a gen-
eralized kinetic coefficienD (k,w) and a generalized “sur-
face tension”v(k,w) by

1
G(k,w)I m, (324)
2D(k,w) (3.29

O kW

Then, the self-consistent equations for the correlation func-
tion C(k,w) and the response functid@(k,) in Fourier
space are given by

V(k,w)=>\2J k2kk_C(k; ,0,)G(k_,0_), (3.26

q,p

2
D(k,w)= )‘ZL K2k?C(k, ,w,)C(k_,0_). (3.27)
v
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For the numerical solution of the mode-coupling equations itvhere we have defined the scaling variable o/\vk? The

is much more convenient to study the intermediate correlacorresponding scaling forms for the Fourier-transformed
tion and response functions, defined by full or half-sidedquantities read

Fourier transforms, respectively,

v(k,t) = (k?) (D), (3.39
C(k, :fw dte“'C(k,t), 3.2 — .
(kw)=]_, (k) (3.28 D(k,t)=N2D vkZ~#i(D), (3.40
" with the scaling variablé=\vk?. For the response function
G(k""):f dte 'O (t)G(k,t). (3.29 the scaling analysis leads to
o ) 1 .

Inserting into Eqs(3.26—(3.27) we get for the generalized Gk,w)= }\—kZG(fo), (3.41

14

kinetic coefficients

G(k,t)=G(1). (3.42
V(k,t)=)\2f k2 kk_C(k, ,t)G(k_,t),  (3.30
q Inserting the scaling forms, Eq4$3.37—(3.40, into the
mode-coupling equations implies for the dynamic exponent
2 202 z=3/2, and leads to the following self-consistency equations
Dkt =5 Lk+kC(k+ BDCk-,t), (83D for the generalized kinetic coefficient and the response func-
tion:

where

) )= %foxdxé(xﬁ)é(x_f), (3.43
D(k,w)zﬁ dte“'D(k,t), (3.32

d ~ . A AA A
EG(t)=—ftdrv(T)G(t—T), (3.44
= , 0
v(k,w)= f dte 'O (t) v(k,t). (3.33
o where x. =1/2+x, and the effective coupling constant is

It is again important to realize that for thé€l+1)- given by

dimensional KPZ equation there exists a fluctuation- = o3
dissipation theoreniFDT) which relates the generalized ki- AN“=N\“D/v°. (3.49

netic coefficientD(k,t) to the generalized surface tension — ) )
v(k,t). As shown in Appendix Asee Eq.(A.11)], the fol- Note that the amplituda is arbitrary. We have chosen it to

lowing identity holds: be equal to the effective coupling constant in order to sim-
plify the scaled mode-coupling equations.
k2 It can be shown analytically from E¢3.43 that the scal-
G(k,t)= —=—0(t)C(k,t). (3.34 ing function for the generalized surface tensigm) shows a
D power law behaviom(t) =t~ %3 with »~0.1608 for small

timest<10"!. Since the response function is almost con-

This allows one to rewrite/(k,t) as stant for smalk, one finds from Eq(3.44) that

\?D ARy 24 * 11
V(k,t):k2 > JG(k+ HG(K_,b). (3.35 G(t)—exp{—CGausg % for t=<10 -, (3.4
q _
with Cgauss97/4~0.3619. In Fig. 1 the numerical solu-
Together with Eq(3.24), which can be written as tions for the scaling functiong(t) andG(t) are depicted, as

well as the results from the Gaussian approximafi®46).
9 t Truncated correlation function in real spacénother
EG(k't):_J drv(k,7)G(k,t—7), (3.36  quantity, which is easily accessible by numerical simula-
0 tions, is thetruncatedcorrelation function in real space,

one now has a set of self-consistent equations for the effec-

tive surface tension and the response function. C(x,t)= - %2[1_eikx:|c(k,t): ExF( A ?/”t ,
Scaling analysis of the mode-coupling equatioNe look —wlTT v X
for solutions of the scaling form (3.47

whereF(0)=1 sinceG(0)= 1. Conforming to the definition

in Eq. (1.11) one getsA=D/v. The universal scaling func-
_ tion F (&) is shown in Fig. 2. The dimensionless argument of
D(k,w)=\DKk *p(®), (3.38 F has the form demanded by E€lL.11) with z=3/2. The

(K, )= Avk?( ), (3.37
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35 , : ‘ agrees rather well with results from numerical simulations,
which find an amplitude of 0.7120.003 [28] and

3.0 ¢ 1 0.725-0.005[29], respectively. In Ref[29] an empirical

05 | V) form for F(&) has been given, which fits the data from the

numerical simulation quite well. We find that the mode-

g 20 coupling result is also quite well approximated by the same
g empirical forms(dashed curves in Fig.)2

g 15

2z 1+4.22 ex§—3.8%%3 for é<é,

S F(é)= 0.7£2/3 —o3 (350

@ TE+0.43% for £=¢,,

where £y=~2.5, but with somewhat different numerical val-
ues for the coefficients. Note that the dashed curves are al-
most indistinguishable from the solid line; in order to make
the dashed curves visible we have plotted the asymptotic
forms in Eq.(3.50 for values smaller and larger thaf,
respectively. In summary, the mode-coupling result for the
FIG. 1. Scaling functions for the generalized surface tensiorscaling functionF (&) agrees with the results from numerical

»(t) and response functiorG(t) vs the scaling variablet  simulation[28,29 within a few percent.
=\(D/v)Y*%¥4. The point-dashed line represents the Gaussian ap- Finite-size effectsNote that the above results are valid for
proximation, Eq.(3.46, for the response function, which is ob- very large systems in thsteady stateTransient behaviors
tained from the analysis of the mode-coupling equations at smalsuch as the growth of interfacial width starting from flat ini-
times. tial conditions may well be more complicat¢@9]. They

. . . may also be computed using the mode-coupling théeith
dimensionless coupling constant can be read off from the, Fqrier-Laplace transform to incorporate the initial condi-
crossover point of(£) (see Fig. 2 we obtaing*=0.87.  {jong): however, the procedure becomes more cumbersome.
This result can be checked more precisely in simulations by Neyertheless, we can say something about the behavior of
directly looking at the scaling amplitudes. Our work thus gystems of finite size already on the basis of our results for

o>

predicts that if the steady state. In principle, the correlation function and
response function are now explicitlydependent. They may
Clx,t=0)=Ax, (3489  pe described in terms of Dy (k,w)~ v (k w)

~LYf(&,kL), where f is now the solution of a two-
variable integral equation with the initial condition
_ _ 2.12/3 D, —a(k,w)=D (the bare valupand similarly forv. In this
COx=00=0.7ANAD™ (3.49 way, one would obtain the explicfunctional renormaliza-
The numerical error is less thar1%. The amplitude tion of various quantities as we look at larger length scales

0.70+0.1, extracted from the mode-coupling equations- The flow behavior ofD and » described by the usual
recursion relations is recovered from thedependence of

D, (k=0,0=0) and v (k=0,0=0). The asymptotic form
D _~v ~LYis, of course, the expected one given the ex-
ponentsy andz [40]. Here we want to emphasize that the
self-consistent equations provide a connection between the
microscopic and macroscopieenormalizedl theory.
If the flow of these functions is already well advanced,
i.e., for times much larger than the initial time=0, where
the interface was absolutely flat, our results for the steady
state can also be used to get approximate results for the
“transient behavior” of a finite-size system. Note that with
“transient behavior” we are not referring to the transients
) starting out from an absolutely flat interface, but to transient
7 behavior after some initial relaxation.
s The interface width in a system of finite sikeis defined

10° by

then

10

F®

wi(t)=([h(x,) =h(x,01*)]. (352
FIG. 2. Scaling functior (&) for the truncated correlation func-
tion in real space versus the scaling variablexAY%/x¥2 The  Upon assuming that the spectrum of the height function is
empirical forms, Eq(3.50, are shown as the dashed curves. Theonly slightly modified by finite-size effect$and/or after
dimensionless coupling constant can be read off from the crossov&ome initial transient the interface width can be approxi-
point of F(&). mated in terms of the correlation function in the steady state,
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lations [30]. If one uses free instead of periodic boundary
conditions, one has to replace the lower bound of the integral
in Eq. (3.52 by #/L and in Eq.(3.54 by . The resulting
scaling function for the interface width is also shown in Fig.
3, and we find, as already noted in Rgd0], that the asymp-
totic behavior at small times is given W(7)=R'7%3 with
RI=R/2?#~2.4.

W(T)

D. Vertex corrections and Ward identities

As we have seen in the preceding section mode-coupling
theory is equivalent to a self-consistent formulation of the
1 perturbation series, where all propagator renormalizations
are taken into account, but vertex corrections have been ne-
glected. Nevertheless, there is quite an excellent agreement
of the mode-coupling results with numerical simulations
T28]. It seems that there is some hidden small parameter,
which remains to be identified. In this section we address this
problem and analyze the magnitude of the vertex corrections.

FIG. 3. Scaling functioWW(7) for the interface width in a sys-
tem of finite sizeL for periodic boundary conditions and free
boundary conditions, respectively. The dashed lines are approxim
tions for small scaled times=\C, tL~%?2 W(7)~3.87*" for peri-
odic boundary conditions and/( ) ~ 2.47* for free boundary con-

ditions. It is known that the KPZ equation is invariant under a
Galilean transformation of the form
2(ty22 (799 1 gonyn [T K ek
wi=2] so-erhz] SLCke) h' (X' ,t)=h(X' + AVt + V- X', (3.59

4D +°°dklle . _ -
= Lyzm et Gkl (352 h' (<, ) =h(x + vt b), (3.60
for periodic boundary conditions. Inserting the scaling lawscorresponding to an infinitesimal tiit of the surface. This

Egs. (3.39—(3.40 for the correlation functions one finds invariance leads to Ward identities, connecting the two- and
three-point vertex functiong], which imply that the nonlin-

5 D earity A is not renormalized, and that there is an exponent
wi(t)=—Lf(7), (353 identity y+2=2.
Since the Ward identities relate the three-point to the two-
where7=\+/D/vL~%% and point vertex functions one may hope that they also give some

information on the magnitude of the vertex functions. Re-
cently, it has been shown by Lebedev and L'ydi] that the
KPZ equation is invariant under the generalized Galilean
transformation

f(7)= % : dxx 2 [1-G(7%?)]. (3.59

Asymptotically one gets

J
Wz(t)— CﬁL for t—o (355 h,(X,,t):h(X,t)+£~X’, (3.61)
L C4?® for t—0. '
Just as in the discussion of the steady state correlation func- h'(x' v =h(xt), (3.62
tion one can define a universal amplitude ratio by
with X" =x—N\{¢, and wherel is an arbitrary function of time
(3.56 but not of coordinates. Since the generating functional for
the vertex functiond’[h,h] is invariant with respect to the
above transformation, one finds the following Ward identity:

Ci

R: —1
(ACH™

and rewrite the scaling law in terms of this ratio

w (t)=CVLW(7), (357 f f it )\k[{ T s o
k oh(k,t) 7 sh(k,t)
where = \C tL %2 and C?=f(%)D/v with f(*)~0.101. (k)
The scaling functio'W(7), shown in Fig. 3, has the follow- o' a¢ o
ing asymptotic behavior: + ShikD ot ﬁﬁ“’)(k) =0. (3.63
1 for r—oo
WD=1RAB  for 750 | (3.58  Taking functional derivatives of the above equation with re-

spect tgﬁ(—ql,—ﬂl) and h(—k;,—w;), then taking the
The ratioR is found to beR=3.8, which is in reasonable limit h,h—0, and recalling the definition of the vertex func-
agreement withRq,,= 3.45+-0.05 found in numerical simu- tions, we obtain the following Ward identity:
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J
|(1)||m —Flz(ql,,uﬂkl,wl;k,w)
koo 0K T

real part

=Mail'11(a1, 11+ 0|ky,01)
+ki 1 4(01, 9|k, 01+ @)}, (3.649

imaginary part

Similarly, by taking derivatives of Eq3.63 with respect to
h (_qlv_lu’l) andh(_qZI_ﬂZ)y we get

generalized surface tension
—
o

2

.. 4d 10
'wi'm ﬁrz,l(%'ﬂl;%:ﬂﬂkaw) 10
—0

-1

10

-2

=Ml A1, 1+ @0, 2] FIG. 4. Scaling function for the real part, Hé®)], and imagi-

) nary part divided by the scaled frequency,[r@)]/®, of the
+ 02l 2001, 01302 2t @)} (3.69 generalized surface tension.

The general Ward identity reads where .= M/ﬁqa/z and &= Cu/;qu/z_ As can be inferred

from Fig. 5 the vertex corrections may be as large as 40% at
i 0V L mn 1 QK 1K, ©) o certain values of the exf[ernal frequencies. If we take the
integral over all frequencies as a measure of the vertex cor-

n rection, however, we find that it is only of the order of a few
Z?\;l 0il'mn({Qi} + wg [{Ki}) percent or even less.

E. Vertex corrections from the two-loop contributions

n
+\ kiI" HKl+we), (3.6 . . .
121 iFmn({Q{Ki}+ wg), (366 In this subsection we study the vertex corrections result-

ing from two-loop diagrams in Lorentzian approximation.
where we have defined{Q;}=0qs,x1; .- 0m+Mm, With the ansatzv(q)=v(q,0=0)= v o(N/27)g? 2 the

{Ki}=Ky,01; ... Kp,0,, and {Qj}+we=0qs,u1;...; mode-coupling equations in Lorentzian approximation read
gj,ujt®; ... 0n,um. INserting the above Ward identities, (note thatz= 3/2)
Eq. (3.64 and Eq.(3.69), into the expression for the vertex
correction, we find , l(+= 1
VLorzzf_ dyy:i72+ y:iZ ) (3.69
A :
ViV(K 5K fe=o=7 o0 —Totv™ (g u) —v*(q.p.) wherey .. = i+y. This givesr?,~1.955. Next we take into
account vertex corrections from the two-loop diagrams. We
v(Q,pq)+ v (Quy) have seen in Sec. Il C that the two-loop contributions to
N 2D(q, 1 4) v(q,0) can be split into a propagator renormalization and a
vertex correction. The former is already taken into account in
X[D(qu-)=D(qu)]f, (367 \ . , ,
whereu . = u* w/2. The first term in the last equation cor- 0.40 - ]
responds to the bare vertex, which is real. The corrections to
this bare vertex result from the imaginary part of the 0.30 ]
frequency-dependent surface tensiefk,») in the second
and third terms of Eq(3.67). In addition, the renormalized > 020} |
vertex contains an imaginary part resulting from the real part
of the generalized surface tension and the noise amplitude 010 |
D(k,w). Let us discuss the vertex corrections resulting from ’
the imaginary part of the generalized surface tension. Using
the mode-coupling results from Sec. Ill C, one can calculate 0.00 | .
the real and imaginary parts e{k,w), as shown in Fig. 4.
Therefrom one deduces the real part of the vertex correc- 0105 To 20 30 20 5.0
tions: I
RV V(K ;K)|k=ol +Ng=—\q IM[2(n— @/2) FIG. 5. Real part of the vertex correctiarlV versusg, where

o AV=Im[»(u—&/2)—v(u+al/2)]/&. The values of the scaling
-v(u+al2)]/lo, (3.68 variable®=0,1,2,4 are indicated in the graph.
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IV. SUMMARY AND CONCLUSIONS

In this paper we have investigated the noisy Burgers
equation using dynamical renormalization group and mode-
coupling techniques. The renormalization group results show
that there appears no singular two-loop contribution to the
height-height correlation function. Upon including the two-
loop vertex corrections into the mode-coupling approach we
were able to show that their effect on the result for the cor-
relation function is approximately 5%, whereas the vertex
corrections themselves are quite large. We suppose that this
overestimates the actual vertex correction. In order to go
beyond the two-loop vertex corrections one should possibly
use an additional suitable resummation of the vertex correc-
tion, e.g., write down a “Bethe-Salpeter” type of equation
-1.5 , ’ : for the vertices representing all ladder diagrams contributing
' ’ to the three-point vertex functions. We leave this problem,
and conceivable further extensions, for future investigations.

As a complementary estimate for the vertex corrections
we have used Ward identities to derive a relation between
certain derivatives of the three-point vertex function and the
renormalized noise amplitude and surface tension. Again,
) ) one finds that the effect of the vertex corrections may be of
the self_—con5|sten.cy schemg of_ mode-coupling theoryina order of a few percent.

Hence, in Lorentzian approximation one may extend the pageqd on the above estimates for the vertex corrections,
mode-coupling approach in the following way: we suppose that mode-coupling theory yields very accurate
results for the scaling functions, at least for tlet+1)-
\2 14v@(p/ Qimensional KPZ(noisy Burgers equation. This conclusion_
W)= — ) (p/q) . (3.70 is suppor_ted by the close agrgemept of t.he modg—pouplmg
2 Jov(q)gs+v(go)gz’ results with those from numerical simulations of finite-size
systems. It remains unclear, however, whether the mode-
coupling approach works as well in the general

v@y)

Inlyl

FIG. 6. Vertex correctioV®(y) from two-loop diagrams as a
function of Iny|. Dashed curvey<O0, dot-dashed curve;>0. The
solid line represents the averag€”(y) =[V®(y) + VB (—y)]/2.

with (d+1)-dimensional case, where the two-loop perturbation
theory corrections do contain singular contributions.
V()= 211 4 U2+y+x ACKNOWLEDGMENTS
y)= ,,'f‘ [V3/2+ 532732+ y3/2+ |x|372] '
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from Fig. 6, the vertex correction&!) are not at all small as

compared to the bare term 1. They vary from about APPENDIX A: GENERALIZED FLUCTUATION-

—100% to+100% as a function of the ratio of the external DISSIPATION RELATION

momentaq andp. ) . ) o
However, by inserting this vertex correction in the ex- In this Appendix we collect several fluctuation-dissipation

tended mode-coupling equation, E@3.70, one finds theoremsFDT’s), which are of importance for the dynamics

v2,,~2.044, which is merely less than 5% larger than theOf systeﬁms desc”_bed by nonlinear Lfi,”gev'” equations.

value obtained with the bare vertex. In addition, the correc- L€t.7 be the time reversal operatiot:-—t. Then de-

tion tends to increase the amplitude ratio calculated in Sed@iled balancdtime inversion symmetjyimplies[42] that

[l C towards the value obtained from numerical simulations.

This result clearly explains why mode-coupling theory has fexr[y:Z—Ft ]=e>¢[y::1—|:7t ], (A1)

been so successful in calculating scaling functions for the vt 2 2

noisy Burgers equation. It still remains a puzzle to us, howyyhere F, = F[h(t)] is the stationary probability distribution

ever, that the vertex correction itself constitutes such a largg,nction and

correction to the bare vertex of the order ©fL00%, while

its effect on the correlation function is much less. Future

investigations may concentrate on the extension of the two- 7*2“1 ’ﬁ]:j dxftzdt

loop vertex correction to higher orders, e.g., by including all T t;

ladder diagrams to the three-point vertex function, which

may give us further insight in the validity and accuracy of X(ah(x,t) —V(h)” (A2)

the fairly simple mode-coupling approach. at '

h(x,t)Dh(x,t)—h(x,t)
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with

Vh)2. (A3)

Vih)= D5F N
(N)=-D—-+5(
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@ ®

© i

)

Without loss of generality, one can assume that the field

h(x,t) is even or odd under time reversal, that is,

Jh=¢h, e==*1. (A4)

Hereh is odd under time reversal. The stationary distribution

P h]=e FIM is characterized by the “free energy”

Flh]= = | dx(Vh)? A5

[hl=55 | dx(Vh)2 (AS)
The time reversal symmetry implies that
—~ - SF[h(—t

.%(t):—&‘(h(—t)—ﬁ) (AG)

[C] ®

(h)
&

Now one uses the causality property of the response func-

tions, (h(ty)---h(th(ty)---h(f))=0, if oneT,>allt;.
Then, for example,

(h(t)h(0))=0 for t<O0. (A7)

With the time reversal operation and E@\.6) it follows
then from Eq.(A7) for t<0 that

—~ SF[h(0)]
Upon redefining= —t, one obtains fot>0
—~ SF[h(0)]
The same arguments can be repeated
(h(ty)- - -h(tYh(t)) with Ty >all t;. The result is
(h(ty)- - -h(th(t)) =6 {t}})
SF[h(ty)]
><< h(ty)- - 'h(tk)TTl)> ,
(A10)

where® (Tl,{tj}) is an obvious generalization of i@ func-

FIG. 7. Feynman diagrams for the two-point vertex function
I'tn(d, ) to two-loop order.

Further identities can be written down in a completely analo-
gous way[36,43.

APPENDIX B: TWO-LOOP PERTURBATION THEORY
FOR THE TWO-POINT VERTEX FUNCTIONS

This Appendix comprises the Feynman diagrams to two-
loop order for the(1+1)-dimensional Kardar-Parisi-Zhang
equation, and the corresponding momentum integrals. The
integrations over the internal frequencies have already been
performed using the residue theorem.

We start with a list of the contributions to two-loop order
to the fully wave-vector- and frequency-dependent two-point
vertex functionT';,(q,w). The other nonvanishing vertex
function I';5(q,w) can be calculated in a similar fashion

fofsee Ref.[2]), or simply be obtained via the fluctuation-

dissipation theoreni2.8). In writing down the diagrammatic
expansion for the dynamic functional one has to take into
account restrictions which follow from causality. In Sec. Il
we have not explicity included the Jacobian
ZTh]=2[ n]lZ[h], which depends on the discretization of
the Langevin equatiofneeded to give a proper definition to
the path integral As can be shown quite generallg6], the
Jacobian cancels the equal-time contractions of the field
and the response field Keeping this in mindor by choos-

ing a discretization with the Jacobian equal to 1), one can

tion. Note that these generalized FDT’s are for the cumulantemit the Jacobian in the dynamic functional. The Feynman

and not for the vertex functions. In particular, we get

2

K
Gll(k,t)=®(t)%602(k,t). (AL1)

diagrams, which account for the restrictions imposed by cau-
sality, are depicted in Fig. 7. Introducing the abbreviations
g+=(0/2)*p, g-=(g_/2)+k, andg. =q. +k, the corre-
sponding analytical expressions read

Fﬁh(qvw)
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