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We investigate the noisy Burgers equation~Kardar-Parisi-Zhang equation in 111 dimensions! using the
dynamical renormalization group~to two-loop order! and mode-coupling techniques. The roughness and dy-
namic exponent are fixed by Galilean invariance and a fluctuation-dissipation theorem. The fact that there are
no singular two-loop contributions to the two-point vertex functions supports the mode-coupling approach,
which can be understood as a self-consistent one-loop theory where vertex corrections are neglected. There-
fore, the numerical solution of the mode-coupling equations yields very accurate results for the scaling func-
tions. In addition, finite-size effects can be studied. Furthermore, the results from exact Ward identities, as well
as from second-order perturbation theory, permit the quantitative evaluation of the vertex corrections, and thus
provide a quantitative test for the mode-coupling approach. It is found that the vertex corrections themselves
are of the order 1. Surprisingly, however, their effect on the correlation function is substantially smaller.

PACS number~s!: 05.40.1j, 64.60.Ht, 05.70.Ln, 68.35.Fx

I. INTRODUCTION

The Kardar-Parisi-Zhang~KPZ! equation represents one
of the most prominent models describing nontrivial nonequi-
librium dynamics@1#. This model equation constitutes one of
the most thoroughly studied continuum theories of kinetic
roughening. It describes the height fluctuationsh(x,t) of a
stochastically grownd-dimensional interface with a growth
rate v(¹h)5l(¹h)2/2 depending nonlinearly on the local
orientation of the surface,

]h

]t
5n¹2h1

l

2
~¹h!21h~x,t !. ~1.1!

The (n¹2h) term mimics a surface tension, and acts to
smooth the interface, while the uncorrelated Langevin noise
h(x,t) tends to roughen the interface and entails the stochas-
tic nature of any growth process. Its first moment vanishes,
and its second moment is given by

^h~x,t !h~x8,t8!&52Dd~d!~x2x8!d~ t2t8!; ~1.2!

note that in general the coefficientsn andD are not related in
any simple manner, in contrast to near-equilibrium situations
where Einstein relations connect damping constants and
noise correlations.

Dynamic scaling.The interface fluctuations are character-
istically scale invariant, i.e., the height profile obtained by a
self-affine rescaling h8(x,t)5b2xh(bx,bzt) is, in a statisti-
cal sense, equivalent toh(x,t). As a consequence, for suffi-
ciently largex0 and t0 , such that the process is already be-
yond the initial transient region, the correlation function

C~x,t !5^@h~x1x0 ,t1t0!2h~x0 ,t0!#
2& ~1.3!

obeys the generalized homogeneity relation (x5uxu)

C~x,t !5b22xC~bx,bzt !. ~1.4!

Upon choosing the scaling parameterb51/x we obtain the
dynamic scaling form

C~x,t !5x2xĈ~ t/xz!. ~1.5!

In the asymptotic limitst→0 andx→`, the scaling function
Ĉ(t/xz) displays power law behavior and hence

C~x,t !5H Ax2x for t→0

Bt2x/z for x→0.
~1.6!

The transverse wandering of the interface may be character-
ized by a perpendicular correlation lengthj'(x)
}AC(x,t50)}xx with the roughness exponentx. The tem-
poral increase of surface roughness is described by a parallel
correlation lengthj i(t)}t

1/z with thedynamic exponent z.
Many growth phenomena show the above dynamic scal-

ing of the interface fluctuations, but with values for the criti-
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cal exponents different from those obtained for the KPZ
equation. Nevertheless, the KPZ equation has become the
starting point for our understanding of nonequilibrium dy-
namics and strong-coupling behavior.

Phenomenology of the KPZ equation.The phenomenol-
ogy of the KPZ equation is now well known@2#. Below the
lower critical dimension dlc52 there appear two renormal-
ization group~RG! fixed points, namely, an infrared-unstable
Gaussian fixed point and an infrared-stable strong-coupling
fixed point describing a smooth and a rough interface, re-
spectively. For dimensionsd.2 there exists a nonequilib-
rium phase transition from a weak-coupling phase for small
effective coupling constantsg5l2D/n3, where the nonlin-
earity is irrelevant~in the RG sense!, to a strong-coupling
phase which seems to be inaccessible through perturbative
methods@2,3#. The scaling exponents in the strong-coupling
phase have been determined by numerical methods@4,5# and
self-consistent mode-coupling approaches@6–8#. The results
obtained from mode-coupling theory suggest the existence of
an upper critical dimension duc54 @9#. This result is sup-
ported by functional RG calculations@10,11# and renormal-
ization group arguments@3,12#. In the numerical simulations,
however, the dynamic critical exponentz for the transient
roughening of an initially flat interface is found to be smaller
than z052 for all dimensions accessible to a numerical
analysis@5#, i.e., there is no indication of any upper critical
dimension. This discrepancy between mode-coupling theory
and numerical results has yet to be resolved and constitutes
one of the most important issues of current theoretical re-
search.

Mapping to other models.The KPZ equation is closely
related to a variety of other problems ranging from fluid
dynamics governed by the Burgers equation@13# to equilib-
rium systems with quenched disorder, namely, directed poly-
mers in random environments@14,15#. Most of these map-
pings and relations are strictly valid for the one-dimensional
case only. In order to assist the reader with the transfer of the
results obtained in the main part of this paper to related sys-
tems, we provide a short account of some of the most impor-
tant issues.

The transformationv52¹h leads to a Langevin equation
for a randomly stirred fluid,

]v

]t
1l~v•¹!v5n¹2v2¹h~x,t !, ~1.7!

which in the casel51 represents ad-dimensional generali-
zation of the noisy Burgers equation@13#. The long-time and
large-distance behavior of the Burgers equation, describing
the dynamics of a vorticity-free velocity field, and the
Navier-Stokes equation, characterizing an incompressible
fluid, have been analyzed by Forster, Nelson, and Stephen in
the framework of dynamical renormalization group theory to
one-loop order@13#. These authors have shown that the
fluctuation-dissipation theorem, valid ind51 only ~see Ap-
pendix A!, together with a Ward identity resulting from the
Galilean invariance of the fluid equation of motion, allows
the determination of the dynamic critical exponentz in
d51 to be exactlyz53/2. Their RG analysis has recently
been extended to two-loop order@16,2,12#.

Another model of surface roughening, which is governed
by the same nonlinearity as the KPZ equation, is the
Kuramoto-Sivashinsky~KS! equation@17#. In contrast to the
KPZ equation the KS equation is completely deterministic:

]h

]t
52n¹2h2¹4h1

l

2
~¹h!2, ~1.8!

and is characterized by a band of unstable modes at small
wave vectors.~Note thatn.0.) Numerical simulations of the
discretized one-dimensional KS equation have recently dem-
onstrated that the large-scale dynamical correlations are de-
scribed by the~111!-dimensional KPZ equation@18#. A
derivation of the KPZ equation from the KS equation has
also been given in Ref.@19#, where the effective parameters
of the KPZ equation have been determined from the numer-
ics of the microscopic chaotic dynamics of the KS equation.
For d>2, however, the results@20# are still controversial.

Recently, Golubovic´ and Wang succeeded in mapping the
equilibrium statistical mechanics of a two-dimensional
smectic-A liquid crystal onto the nonequilibrium dynamics
of the ~111!-dimensional stochastic nonlinear KPZ~noisy
Burgers! equation@21#. Kashuba has shown that there exists
a one-to-one relationship between the Hamiltonian describ-
ing the nonlinear elasticity of a two-dimensional smectic-A
liquid crystal and the Hamiltonian characterizing the long-
range spin fluctuations in a two-dimensional planar ferro-
magnet subject to~two-dimensional! dipolar forces @22#.
These relationships thus provide an interesting, exact ap-
proach to studying the anomalous elasticity of smectic-A liq-
uid crystals, as well as the spin fluctuations in the ordered
phase of a dipolar planar ferromagnet in two dimensions,
provided the corresponding KPZ growth model can be
solved exactly, or at least to a high degree of accuracy.

A number of somewhat more exotic relationships have
been found very recently, e.g., the kinetics of the annihilation
processA1B→0 with driven diffusion was mapped onto
the ~111!-dimensional KPZ equation@25#, and the formal
equivalence of the continuum limit of the Heisenberg equa-
tion of motion of a certain spin-1/2 chain with the Fokker-
Planck equation corresponding to the noisy Burgers equation
was demonstrated@26#. Besides these various mappings and
relationships, which are valid in~111! dimensions only, the
KPZ equation is also closely related to the dynamics of a
sine-Gordon chain@23#, the driven-diffusion equation@24#,
and directed paths in random media@14#.

Invariances of the noisy Burgers equation.The one-
dimensional KPZ equation is special in several ways. First,
there is a huge list of mappings onto related models as de-
scribed above. Hence any advances in understanding the
growth model will have broad implications for many physi-
cal problems. Second, the noisy Burgers equation has two
important ‘‘symmetry’’ properties, namely, Galilean invari-
ance and detailed balance. The Galilean invariance@13# of
the one-dimensional hydrodynamic equation~1.7! corre-
sponds to an invariance of the stochastic growth model with
respect to an infinitesimal tilt of the surface,h→h1v•x,
x→x2lvt. As a consequence of this symmetry, one finds
that the amplitude of the nonlinearityl is invariant under
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RG transformations, which in turn implies an exponent iden-
tity relating the roughness exponentx to the dynamic expo-
nentz,

x1z52. ~1.9!

Whereas the latter invariance is valid for any dimensiond,
the detailed balance property of the KPZ equations holds in
d51 only ~see Appendix A!. It can be shown@1# that the
Fokker-Planck equation corresponding to the~111!-
dimensional KPZ equation has the stationary solution

P st~h!}expF2
n

2DE dxS ]h

]xD
2G ; ~1.10!

this implies that the roughness exponent isx51/2, as if the
nonlinearity were entirely absent. Together with the expo-
nent identity~1.9!, one thus finds for the dynamic exponent
z53/2.

Scaling of the (111)-dimensional KPZ equation.As a
consequence of the above invariance properties of the non-
linear Langevin equation~1.1!, one can show that the height-
height correlation function obeys the following scaling law
@27#:

C~x,t !5Ax2xF~lAAt/xz!. ~1.11!

The argument of the scaling function is now dimensionless,
and the scaling function itself isuniversal. It acquires the
asymptotic form

F~j!5H 1 for j→0

~j/2g* !2x/z for j→`,
~1.12!

whereg* is a crossover scale. The RG fixed point of the
~111!-dimensional KPZ equation turns out to be a strong-
coupling fixed point. As discussed above, despite this fact
the roughness and the dynamic exponent are knownexactly
as a consequence of the particular invariance properties of
the one-dimensional case. The scaling functionF(j) has
been calculated using a nonperturbative mode-coupling ap-
proach @27#. Striking agreement with the results of direct
numerical simulations@28–30# were found.

The nonperturbative mode-coupling approach essentially
consists in a resummation of the perturbation theory, such
that all propagator renormalizations are properly taken into
account, while the vertex corrections are neglected. This is
clearly a veryad hocand uncontrolled procedure; neverthe-
less, mode-coupling theories have been remarkably success-
ful in applications to many areas of condensed matter theory,
such as structural glass transitions@31#, critical dynamics of
magnets@32,33#, binary mixtures@32,34#, and others@34#. In
all those fields, it has been found that mode-coupling theory
is capable of describing experiments in a quantitative man-
ner. The factorization approximation in the above mode-
coupling concepts is also known in the theory of hydrody-
namic turbulence as Kraichnan’s direct interaction
approximation@35#.

The present work is motivated by this fact, and further-
more by the striking agreement of the mode-coupling results

and those obtained from numerical simulations for the KPZ
equation. In what follows, we will try to give a systematic
analysis of the mode-coupling approach using the field-
theoretic formulation of Langevin dynamics@36–38#. In par-
ticular, the fact that there are no singular two-loop contribu-
tions to the two-point vertex functions in perturbation theory
in d51 strongly supports the mode-coupling approach. As
the infrared singularities, i.e., the exponentsz and x, are
known exactly, the self-consistent treatment is expected~and
found! to reproduce the scaling functions to a high degree of
accuracy. In addition, we shall analyze vertex corrections in
order to understand the range of validity of the mode-
coupling approach. Our explicit results for the vertex correc-
tions, as obtained from~exact! Ward identities as well as
from second-order perturbation theory, allow for a quantita-
tive estimate of the systematic errors enshrined in the mode-
coupling approach. Since this specific type of self-consistent
treatment is used in many areas of theoretical physics, albeit
under different nomenclature, we hope that this work will
shed some light on its applicability, limitations, and possible
extensions.

Outline. The outline of the paper is as follows. In the
subsequent section we summarize results from previous RG
studies, discuss their relevance for the mode-coupling ap-
proach, and provide those explicit results which are needed
in subsequent calculations. The formulation of the mode-
coupling theory is discussed in Sec. III, as well as the solu-
tion of the self-consistent mode-coupling equations for the
noisy Burgers equation. In addition to the scaling functions
in the thermodynamic limit, finite-size corrections are ex-
plored. The size of the vertex corrections is estimated from
the ~exact! Ward identities stemming from Galilean invari-
ance, as well as from the explicit two-loop perturbational
contributions. In the bulk of the present work, we shall refer
solely to the ~111!-dimensional KPZ equation; however,
whenever more general statements ind dimensions are pos-
sible, this restriction tod51 is relaxed. We conclude with a
brief summary and a discussion of some of the remaining
open problems.

II. RESULTS FROM RENORMALIZATION
GROUP THEORY

We start by reviewing some known results from perturba-
tional renormalization group theory@1,16,2#, specializing to
111 dimensions. This section also contains the explicit ex-
pressions for the vertex corrections to the two-point vertex
functions to two-loop order. In this section, as well as in the
Appendix, unrenormalized quantities are denoted by a sub-
script ‘‘0.’’

A. Dynamic functional

We start with a brief description of the field-theoretical
formulation of Langevin-type dynamics@36,37#. The sto-
chastic forcesh(x,t) obeying^h(x,t)&50 and Eq.~1.2! can
be taken to be Gaussian distributed,

W@h#}expF2
1

4D0
E ddxE dth2~x,t !G . ~2.1!
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Using the equation of motion~1.1!, we can eliminate the
noise term; with an additional Gaussian transformation intro-
ducing Martin-Siggia-Rose auxiliary fieldsh̃ @38# the ensu-
ing probability distributionP@h# for the height fluctuations
may be further linearized, and thus the original nonlinear
stochastic equation of motion can be reformulated in terms
of a generating functional@2#:

Z@ j̃ , j #5E D@h#D@ i h̃#expSJ @ h̃,h#

1E ddxE dt@ j̃ h̃1 jh# D , ~2.2!

with the Janssen-de Dominicis functional given by

J @ h̃,h#5E ddxE dtHD0h̃h̃2h̃F]h]t 2n0¹
2h

2
l0

2
~¹h!2G J . ~2.3!

Correlation and response functions can now be expressed as
functional averages with weight exp$J @ h̃,h#%. Upon sepa-
rating the dynamic functional into a quadratic and a nonlin-
ear part, a standard perturbation theory can be formulated,
where the cumulantsGÑ,N of the correlation and response
functions are defined by functional derivatives of
F@ j̃ , j #5 lnZ@ j̃,j# with respect to the sourcesj̃ and j , respec-
tively. Vertex functionsG Ñ,N are then obtained from the cu-
mulants by a Legendre transformation,

G@ h̃,h#52F@ j̃ , j #1E ddxE dt~ h̃ j̃1h j !, ~2.4!

where

h5dF/d j and h̃5dF/d j̃ . ~2.5!

We finally note that the functional determinant originating in
the variable change from the noise fieldsh to the height
fluctuationsh serves to exactly cancel the acausal contribu-
tions to the perturbation series, thus leaving only those Feyn-
man diagrams with correct time ordering in the response
propagators@36,2#.

B. Two-point vertex functions and renormalization

We can now proceed to study the renormalization of the
KPZ equation in one dimension. As discussed in detail in
Ref. @2#, the Ward identity stemming from the Galilean in-
variance of the Burgers equation shows that the nonlinearity
l5l0 does not renormalize. This leaves the renormalization
of the surface tension~diffusion coefficient! n0 and of the
noise correlation strengthD0 , which may be inferred from
studying the two-point vertex functions]q2G h̃h(q,v) and
G h̃ h̃(q,v), respectively; because of the fluctuation-
dissipation theorem valid~only! in d51 ~see Appendix A!,
these coefficients are actually proportional to each other and
must therefore renormalize in the same way. In Appendix B,
we list the Feynman diagrams and the corresponding analyti-
cal expressions forG h̃h(q,v) to two-loop order~second-
order perturbation theory inl), specializing the results of
Ref. @2# to d51. Upon collecting these terms, splitting the
vertex functions into regular and ultraviolet singular parts,
G h̃h5G

h̃h

reg
1G

h̃h

sing
, eventually the following comparatively

simple results are obtained:

G
h̃h

reg
~q,v!

iv1n0q
2 52

l4D0
2

2n0
3 q2E

p
E
k

q2

iv1n0q1
2 1n0q2

2

1

q̃2@ iv1n0q̃1
2 1n0q̃2

2 #@ iv1n0q1
2 1n0q̃2

2 1n0k
2#
, ~2.6!

G
h̃h

sing
~q,v!5 iv1n0q

21
l2D0

2n0
q2E

p

1

iv1n0q1
2 1n0q2

2 ; ~2.7!

here we have introduced the abbreviationsq65(q/2)6p,
q˜65q66k, and *p5*2`

1`dp/2p. Note that the singular
term stems entirely from the one-loop diagram~the expres-
sion involving only one internal momentump), while the
ultraviolet singular two-loop contribution vanishes. The
second-order term in the perturbation expansion thus yields
merely regular corrections to the scaling functions. The sec-
ond relevant vertex function can be written as
G h̃ h̃(q,v)522D0Re@G h̃h(q,v)/n0q

2#, which allows us to
define the wave-number- and frequency-dependent diffusion
coefficient as

n~q,v!5
1

n0q
2Re@G h̃h~q,v!#52

1

2D0
G h̃ h̃~q,v!, ~2.8!

confirming the validity of the fluctuation-dissipation theorem
of Appendix A @2,16#.

In evaluating those contributions which become singular
as the critical dimensiondlc52 is approached, one has to be
careful to choose a normalization point~NP! where either
q or v is finite, in order not to interfere with the infrared
singularities, which would also appear as poles in«5d22
~for a more detailed discussion, see Refs.@2# and @12#!. A
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convenient choice is the NPq50, iv/2n5k2; with
g05l2D0 /n0

3 one thus arrives at

G h̃ h̃~q,v!NP
sing522D0F11

g0
4 Ep

1

k2Z1p2G , ~2.9!

]

]q2
G h̃h~q,v!NP

sing5n0F11
g0
4 Ep

1

k2Z1p2G , ~2.10!

whereZ is the renormalization factor for bothn andD. The
remaining singular integral is readily evaluated using the di-
mensional regularization scheme

E
p

1

m21p2
52

Cdm
«

«
, ~2.11!

whereCd5G(22d/2)/2d21pd/2 is a geometry factor, and
C151/2. Note that in this evaluation atfixed dimension
d51, no expansion with respect to«5d22 was applied; the
latter parameter was merely used to effectively count the
singularities in the integrals that would appear atdlc52,
when they are generalized to arbitrary dimensiond. These
ultraviolet poles may now be absorbed in renormalized quan-
tities D5ZD0 and n5Zn0 , with the renormalization con-
stant

Z512
g0k

«

8«
1
g0
2k2«

128«
. ~2.12!

Defining the renormalized coupling

g5
g0
Z2k

, ~2.13!

we can now readily calculate Wilson’s flow functions,

z~g!5k]ku0lnZ52g/8, ~2.14!

b~g!5k]ku0g5g~d2222z!5g~211g/4! ~2.15!

in d51. Searching for zeros of theb function yields the
infrared-stable nontrivial fixed point

g*54, ~2.16!

from which the critical exponents

x52z~g* !51/2, ~2.17!

z521z~g* !53/2 ~2.18!

can be deduced. Note that these explicit results fulfill the
exponent sum rule~1.9!; of course, as these exponents can
already be determined from this identity and the additional
constraint of the fluctuation-dissipation theorem~see Appen-
dix A!, this rather serves as a check for the calculations. Note
that the remarkable cancellation of the singular two-loop
contributions has been essential here from the diagrammatic
point of view.

In Ref. @2#, the renormalization group approach is carried
out in arbitrary space dimension 0<d,4. For d.2 an ex-
pansion with respect to«5d22 can be pursued, and was in
fact recently carried through to arbitrary order in the pertur-
bation series by La¨ssig@3#. Ford,2, on the other hand, one
may note that the fixed point couplingg*}d approaches
zero ford→0, and the results may be cast into an expansion
about zero space dimension@12#.

C. Two-loop scaling functions

For later use, we now summarize the results from the
second-order perturbation theory once more, albeit with
some slight changes. First, we explicitly separate the zero-
and one-loop contributions, and the two-loop contributions
due to propagator and vertex renormalizations. Second, we
take ‘‘self-consistent’’ propagators, i.e., we generalizen0
and D0 to a q-dependent quantity according to Eq.~2.8!;
however, neglecting its frequency dependence. This is in the
spirit of the Lorentzian approximation in mode-coupling
theory, to be discussed below; its formal advantage is that
the pole structure in the complex frequency plane remains
unaltered, and therefore the results from Appendix B may be
readily generalized. The zero- and one-loop contributions to
G h̃h(q,0) thus read@see Figs. 7~a! and 7~b! below#:

G
h̃h

~1!
~q,0!5q2Fn~q!1

l2

2 Ep
1

n~q1!q1
2 1n~q2!q2

2 G ; ~2.19!

similarly, the two-loop contribution due to propagator renor-
malization@Figs. 7~c!–7~f! below# becomes

G
h̃h

~2,p!
~q,0!52q2

l4

2 EpEk
q2
2

@n~q1!q1
2 1n~q2!q2

2 #2

3
1

n~q1!q1
2 1n~ q̄1!q̄1

2 1n~ q̄2!q̄2
2
, ~2.20!

while the result for the two-loop contribution due to vertex
corrections@Figs. 7~g!–7~j! below# is

G
h̃h

~2,v!
~q,0!52q2l4E

p
E
k

q2

n~q1!q1
2 1n~q2!q2

2

q̃1

@n~ q̃1!q̃1
2 1n~ q̃2!q̃2

2 #@n~q1!q1
2 1n~ q̃2!q̃2

2 1n~k!k2#
. ~2.21!
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III. MODE-COUPLING THEORY AND VERTEX
CORRECTIONS

In this section we study the mode-coupling approximation
for the Burgers equation. For readers not familiar with the
dynamical functional approach discussed in the previous sec-
tion, we start by a derivation of the mode-coupling equation
using a perturbation theory for the equation of motion.

A. Perturbation series and mode-coupling equations

In Fourier space the equation of motion~1.1! reads

h~k,v!5G0~k,v!h~k,v!1G0~k,v! j̃ ~k,v!

1
1

2
G0~k,v!E

q,m
Vk1 ;k2

~0! h~k1 ,v1!h~k2 ,v2!,

~3.1!

where G0(k,v)51/(nk22 iv) is the ‘‘bare propagator,’’
Vk1 ;k2
(0) 52lk1•k2 is the ‘‘bare vertex,’’ andk6[k/26q,

v6[v/26m. The noiseh is assumed to be Gaussian and
uncorrelated, given by the weight function Eq.~2.1!. A small
external perturbationj̃ (k,v) has also been included in Eq.
~3.1!, and will be used to generate the response functions.
Typically, the quantities of interest are the noise-averaged
two-point correlation function

^h~K !h~K 8!&5C~K !d~K1K 8!, ~3.2!

and the noise-averaged linear response function

d^h~K !&

d j̃ ~K 8!
5G~K !d~K2K 8!, ~3.3!

where (k,v) is abbreviated by K and d(K1K 8)
5(2p)d11dd(k1k8)d(v1v8). These are special cases of
the general Green’s function

Gm,n~2P1 ; . . . ;2PmuK1 ; . . . ;Kn!

5
dm^h~K1!•••h~Kn!&c

d j̃ ~P1!•••d j̃ ~Pm!
, ~3.4!

where the subscriptc denotes the connected part. In this
notation, the two-point correlation function is
^h(K )h(K 8)&5G0,2( uK ;K 8) and the linear response func-
tion is d^h(K )&d j̃ (K 8)5G1,1(2K 8uK ). From Eq.~3.4!, it is
clear thatGm,050. The above definition of the Green’s func-
tions is identical to the one used in the dynamic functional
formalism ~Sec. II A!.

One approach to studying the Green’s functionsGm,n is
perturbation theory. ForV(0)50, Eq. ~3.1! is just the linear
diffusion equation. ForV(0)Þ0, the solution of Eq.~3.1! may
be obtained iteratively by a perturbation expansion in powers
of V(0). For example, the lowest order correction to the re-
sponse function is

G1~K !5G0~K !1G0~K !S1~K !G0~K !, ~3.5!

whereC0(K )52DuG0(K )u2 is the ‘‘bare correlator,’’ and

S1~K !52E
Q
Vk1 ;k2

~0! G0~K2!C0~K1!Vk1 ;k
~0! ~3.6!

is the one-loop renormalization of the ‘‘self-energy.’’ Simi-
larly, the lowest order correction to the correlation function
is

C1~K !52D1~K !uG0~K !u2, ~3.7!

where

D1~K !5D1
1

4EQVk1 ;k2

~0! C0~K2!C0~K1!Vk1 ;k2

~0! ~3.8!

is the one-loop renormalization of the ‘‘noise spectrum.’’
Unfortunately, such perturbation series diverge in the hydro-
dynamic limit k,v→0. One way to proceed is to perform a
renormalization group analysis. It turns out, however, that
there is no fixed point that can be obtained in a controlled
« expansion with«522d below d52 dimensions@2#.
Hence, a nonperturbative method is required to treat the KPZ
problem. One approximation which has been frequently used
is to replace the bare propagatorG0 and bare correlatorC0 in
Eqs.~3.6! and ~3.8! by the renormalized functionsG andC
while keeping the vertexV(0) unchanged. This is known as
the mode-coupling approximation~or Kraichnan’s direct in-
teraction approximation!, and it leads to the following closed
set of integral equations:

S~K !52E
Q
Vk1 ;k2

~0! G~K2!C~K1!Vk1 ;k
~0! , ~3.9!

D~K !5D1
1

4EQVk1 ;k2

~0! C~K2!C~K1!Vk1 ;k2

~0! , ~3.10!

whereS andD are defined byG andC through

G21~K !5G0
21~K !2S~K !, ~3.11!

C~K !52D~K !uG~K !u2. ~3.12!

Of course, as this procedure neglects any vertex renormaliza-
tions, it constitutes a partial sum of the perturbation series
only, and asa priori no information is available about the
size of the missing contributions, it clearly constitutes an
uncontrolled approximation. Nevertheless, the mode-
coupling theory has been quite successfully applied in many
areas of condensed matter theory, as mentioned in the Intro-
duction. It was first applied to the KPZ problem by van
Beijeren, Kutner, and Spohn@24# to get the scaling expo-
nentsx and z in d51. Recently, the mode-coupling equa-
tions were solved numerically to obtain the entire function
C(k,v) in 111 dimensions@27#, and striking agreement
with the scaling function obtained by direct numerical simu-
lations@28# was found~for details see Sec. III C below!. This
result is very surprising and prompted us to study the mode-
coupling theory in more detail. In what follows, we will try
to give a systematic analysis of the mode-coupling approach
using the field-theoretic formulation of Langevin dynamics.
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B. Dynamic field theory, and vertex corrections

The starting point of our study is the response function,
which can be formally obtained by differentiating Eq.~3.1!
with respect to the perturbationj̃ (K 8). We obtain

G1,1~2K 8uK !5G0~K !d~K2K 8!

1
1

2
G0~K !E

Q
Vk1 ;k2

~0! G1,2~2K 8uK1 ;K2!.

~3.13!

Mode-coupling theory amounts to expressingG1,2 in terms
of the lower order functionsG1,1 andG0,2.

In order to analyze the Green’s functions systematically,
we turn to a functional integral method described in Sec. II.
From the generating functional Eq.~2.2! the Green’s func-
tions Eq.~3.4! can be easily obtained as the functional de-
rivatives ofF@ j̃ , j #5 lnZ@ j̃,j#.

By taking derivatives of Eqs.~2.5! and using Eq.~2.4!, it
is straightforward to relate the Green’s functionsGm,n to the
vertex functionsGm,n , e.g.,

G1,1~PuK !5G1,1~2P!d~K1P!, ~3.14!

whereG1,1(2P)5G21(P). The two-point correlation func-
tion can also be easily found. It has the form of Eq.~3.12!,
with

G2,0~P1 ,P2u !5G2,0~P1!d~P11P2!, ~3.15!

where G2,0(P)522D(P). All higher order Green’s func-
tions can be written as products ofG(K ), C(K ), and the
higher order vertex functions. For example,

G2,1~P1 ;P2uK !52G~K !G1,2~K uP1 ;P2!G~2P1!G~2P2!,
~3.16!

G1,2~PuK1 ;K2!52G~K1!G~K2!G2,1~K1 ;K2uP!G~2P!

2G~K1!C~K2!G1,2~K1uK2 ;P!G~2P!

2C~K1!G~K2!G1,2~K2uK1 ;P!G~2P!.

~3.17!

Using Eq.~3.17! in Eq. ~3.13!, we obtain

G1,1~2K 8uK !5G~K !d~K2K 8!5G0~K !d~K2K 8!

2G0~K !E
Q
Vk1 ;k2

~0! G~K2!

3FC~K1!G1,2~K2uK1 ;2K 8!

1
1

2
G~K1!G2,1~K2 ;K1u2K 8!GG~K 8!

~3.18!

for the full response function. Note that it has the form
G(K )5G0(K )1G0(K )S(K )G(K ), where S(K ) is the
self-energy defined in Eq.~3.11!. If we write the vertex func-
tions as

G1,2~K uK1 ;K2!5Ga~K1 ;K2!d~K1K11K2!, ~3.19!

G2,1~P1 ;P2uK !5Gb~P2 ;K !d~K1P11P2!, ~3.20!

then the self-energy becomes

S~K !52E
Q
Vk1 ;k2

~0! G~K2!C~K1!V~K1 ;K !, ~3.21!

where

V~K1 ;K !5Ga~K1 ;2K !1
G21~2K1!

4D~K1!
Gb~K1 ;2K !

~3.22!

denotes the ‘‘renormalized vertex function.’’ It will be useful
to write the vertex function in a slightly different form:

V~K1 ;K !5Ga~K1 ;2K !1
G21~K1!1G21~2K1!

4D~K1!

3Gb~K1 ;2K !. ~3.23!

The additional term does not changeS(K ) in Eq. ~3.21!
because its poles, fromG(K2) andG(2K1), are on the
same side of the complex frequency plane. Hence the fre-
quency integral for this additional term yields zero. Compar-
ing Eq. ~3.21! with Eq. ~3.9!, we realize that the mode-
coupling equation becomes exact ifV(K1 ;K )5Vk1 ;k

(0) . In

Sec. III D, we will show that this equality in fact does not
hold. Yet, by exploiting a number of identities relating the
different vertex functions, we shall show that the correction
to V(K1 ;K ) is small in the limitK1→0. This is hopefully
the first step in understanding the puzzle of why the mode-
coupling theory works so well, at least in the case of the
noisy Burgers equation.

C. Numerical solution of the mode-coupling equations

In this section we present the numerical solution of the
~111!-dimensional KPZ equation. In view of the results
from the preceding section it is convenient to define a gen-
eralized kinetic coefficientD(k,v) and a generalized ‘‘sur-
face tension’’n(k,v) by

G~k,v!5
1

2 iv1n~k,v!
, ~3.24!

C~k,v!5
2D~k,v!

v21@n~k,v!#2
. ~3.25!

Then, the self-consistent equations for the correlation func-
tion C(k,v) and the response functionG(k,v) in Fourier
space are given by

n~k,v!5l2E
q,m

k1
2 kk2C~k1 ,v1!G~k2 ,v2!, ~3.26!

D~k,v!5
l2

4 Eq,mk1
2 k2

2 C~k1 ,v1!C~k2 ,v2!. ~3.27!
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For the numerical solution of the mode-coupling equations it
is much more convenient to study the intermediate correla-
tion and response functions, defined by full or half-sided
Fourier transforms, respectively,

C~k,v!5E
2`

`

dteivtC~k,t !, ~3.28!

G~k,v!5E
2`

`

dteivtQ~ t !G~k,t !. ~3.29!

Inserting into Eqs.~3.26!–~3.27! we get for the generalized
kinetic coefficients

n~k,t !5l2E
q
k1
2 kk2C~k1 ,t !G~k2 ,t !, ~3.30!

D~k,t !5S l

2D 2E
q
k1
2 k2

2 C~k1 ,t !C~k2 ,t !, ~3.31!

where

D~k,v!5E
2`

`

dteivtD~k,t !, ~3.32!

n~k,v!5E
2`

`

dteivtQ~ t !n~k,t !. ~3.33!

It is again important to realize that for the~111!-
dimensional KPZ equation there exists a fluctuation-
dissipation theorem~FDT! which relates the generalized ki-
netic coefficientD(k,t) to the generalized surface tension
n(k,t). As shown in Appendix A@see Eq.~A.11!#, the fol-
lowing identity holds:

G~k,t !5
nk2

D
Q~ t !C~k,t !. ~3.34!

This allows one to rewriten(k,t) as

n~k,t !5k2
l2D

2n E
q
G~k1 ,t !G~k2 ,t !. ~3.35!

Together with Eq.~3.24!, which can be written as

]

]t
G~k,t !52E

0

t

dtn~k,t!G~k,t2t!, ~3.36!

one now has a set of self-consistent equations for the effec-
tive surface tension and the response function.

Scaling analysis of the mode-coupling equations. We look
for solutions of the scaling form

n~k,v!5l̄nkzn̂~ v̂ !, ~3.37!

D~k,v!5l̄Dk2mn̂~v̂ !, ~3.38!

where we have defined the scaling variablev̂5v/l̄nkz. The
corresponding scaling forms for the Fourier-transformed
quantities read

n~k,t !5~ l̄nkz!2n̂~ t̂ !, ~3.39!

D~k,t !5l̄2Dnkz2mn̂~ t̂ !, ~3.40!

with the scaling variablet̂5l̄nkzt. For the response function
the scaling analysis leads to

G~k,v!5
1

l̄nkz
Ĝ~v̂ !, ~3.41!

G~k,t !5Ĝ~ t̂ !. ~3.42!

Inserting the scaling forms, Eqs.~3.37!–~3.40!, into the
mode-coupling equations implies for the dynamic exponent
z53/2, and leads to the following self-consistency equations
for the generalized kinetic coefficient and the response func-
tion:

n̂~ t̂ !5
1

2pE0
`

dxĜ~x1 t̂ !Ĝ~x2 t̂ !, ~3.43!

]

]t
Ĝ~ t̂ !52E

0

t̂
dt̂ n̂~ t̂ !Ĝ~ t̂2 t̂ !, ~3.44!

where x651/26x, and the effective coupling constant is
given by

l̄25l2D/n3. ~3.45!

Note that the amplitudel̄ is arbitrary. We have chosen it to
be equal to the effective coupling constant in order to sim-
plify the scaled mode-coupling equations.

It can be shown analytically from Eq.~3.43! that the scal-
ing function for the generalized surface tensionn̂( t̂) shows a
power law behaviorn̂( t̂)5 n̄ t̂22/3 with n̄'0.1608 for small
times t̂<1021. Since the response function is almost con-
stant for smallt̂, one finds from Eq.~3.44! that

Ĝ~ t̂ !5exp$2CGausst̂
4/3% for t̂<1021, ~3.46!

with CGauss59n̄/4'0.3619. In Fig. 1 the numerical solu-
tions for the scaling functionsn̂( t̂) andĜ( t̂) are depicted, as
well as the results from the Gaussian approximation~3.46!.

Truncated correlation function in real space. Another
quantity, which is easily accessible by numerical simula-
tions, is thetruncatedcorrelation function in real space,

C~x,t !5E
2`

` dk

2p
2@12eikx#C~k,t !5

D

n
xFS lAD/nt

x3/2 D ,
~3.47!

whereF(0)51 sinceG(0)51. Conforming to the definition
in Eq. ~1.11! one getsA5D/n. The universal scaling func-
tion F(j) is shown in Fig. 2. The dimensionless argument of
F has the form demanded by Eq.~1.11! with z53/2. The
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dimensionless coupling constant can be read off from the
crossover point ofF(j) ~see Fig. 2!; we obtaing*50.87.
This result can be checked more precisely in simulations by
directly looking at the scaling amplitudes. Our work thus
predicts that if

C~x,t50!5Ax, ~3.48!

then

C~x50,t !50.70~lA2t !2/3. ~3.49!

The numerical error is less than61%. The amplitude
0.7060.1, extracted from the mode-coupling equations,

agrees rather well with results from numerical simulations,
which find an amplitude of 0.71260.003 @28# and
0.72560.005 @29#, respectively. In Ref.@29# an empirical
form for F(j) has been given, which fits the data from the
numerical simulation quite well. We find that the mode-
coupling result is also quite well approximated by the same
empirical forms~dashed curves in Fig. 2!

F~j!5H 114.22 exp$23.82j3/2% for j<j0

0.7j2/310.43j22/3 for j>j0 ,
~3.50!

wherej0'2.5, but with somewhat different numerical val-
ues for the coefficients. Note that the dashed curves are al-
most indistinguishable from the solid line; in order to make
the dashed curves visible we have plotted the asymptotic
forms in Eq. ~3.50! for values smaller and larger thanj0 ,
respectively. In summary, the mode-coupling result for the
scaling functionF(j) agrees with the results from numerical
simulation@28,29# within a few percent.

Finite-size effects. Note that the above results are valid for
very large systems in thesteady state. Transient behaviors
such as the growth of interfacial width starting from flat ini-
tial conditions may well be more complicated@39#. They
may also be computed using the mode-coupling theory~with
a Fourier-Laplace transform to incorporate the initial condi-
tions!; however, the procedure becomes more cumbersome.

Nevertheless, we can say something about the behavior of
systems of finite sizeL already on the basis of our results for
the steady state. In principle, the correlation function and
response function are now explicitlyL dependent. They may
be described in terms of DL(k,v);nL(k,v)
;L1/2f (v̂,kL), where f is now the solution of a two-
variable integral equation with the initial condition
DL5a(k,v)5D ~the bare value! and similarly forn. In this
way, one would obtain the explicitfunctional renormaliza-
tion of various quantities as we look at larger length scales
L. The flow behavior ofD and n described by the usual
recursion relations is recovered from theL dependence of
DL(k50,v50) and nL(k50,v50). The asymptotic form
DL;nL;L1/2 is, of course, the expected one given the ex-
ponentsx and z @40#. Here we want to emphasize that the
self-consistent equations provide a connection between the
microscopic and macroscopic~renormalized! theory.

If the flow of these functions is already well advanced,
i.e., for times much larger than the initial timet50, where
the interface was absolutely flat, our results for the steady
state can also be used to get approximate results for the
‘‘transient behavior’’ of a finite-size system. Note that with
‘‘transient behavior’’ we are not referring to the transients
starting out from an absolutely flat interface, but to transient
behavior after some initial relaxation.

The interface width in a system of finite sizeL is defined
by

wL
2~ t !5^@h~x,t !2h~x,0!#2&uL . ~3.51!

Upon assuming that the spectrum of the height function is
only slightly modified by finite-size effects~and/or after
some initial transient!, the interface width can be approxi-
mated in terms of the correlation function in the steady state,

FIG. 1. Scaling functions for the generalized surface tension
n̂( t̂) and response functionĜ( t̂) vs the scaling variablet̂
5l(D/n)1/2k3/2t. The point-dashed line represents the Gaussian ap-
proximation, Eq.~3.46!, for the response function, which is ob-
tained from the analysis of the mode-coupling equations at small
times.

FIG. 2. Scaling functionF(j) for the truncated correlation func-
tion in real space versus the scaling variablej5lA1/2t/x3/2. The
empirical forms, Eq.~3.50!, are shown as the dashed curves. The
dimensionless coupling constant can be read off from the crossover
point of F(j).
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wL
2~ t !52E

2`

1`dv

2p
~12eivt!2E

2p/L

1` dk

2p
C~k,v!

5
4D

n E
2p/L

1` dk

2p

1

k2
@12G~k,t !# ~3.52!

for periodic boundary conditions. Inserting the scaling laws
Eqs.~3.37!–~3.40! for the correlation functions one finds

wL
2~ t !5

D

n
L f ~ t̃ !, ~3.53!

wheret̃5lAD/nL23/2t and

f ~ t̃ !5
2

pE2p

`

dxx22@12G~ t̃x3/2!#. ~3.54!

Asymptotically one gets

wL
2~ t !5H CL

2L for t→`

Ct
2t2/3 for t→0 .

~3.55!

Just as in the discussion of the steady state correlation func-
tion one can define a universal amplitude ratio by

R5
Ct

~lCL
4!1/3

, ~3.56!

and rewrite the scaling law in terms of this ratio

wL~ t !5CLALW~t!, ~3.57!

wheret5lCLtL
23/2 andCL

25 f (`)D/n with f (`)'0.101.
The scaling functionW(t), shown in Fig. 3, has the follow-
ing asymptotic behavior:

W~t!5H 1 for t→`

Rt1/3 for t→0 .
~3.58!

The ratioR is found to beR53.8, which is in reasonable
agreement withRexpt53.4560.05 found in numerical simu-

lations @30#. If one uses free instead of periodic boundary
conditions, one has to replace the lower bound of the integral
in Eq. ~3.52! by p/L and in Eq.~3.54! by p. The resulting
scaling function for the interface width is also shown in Fig.
3, and we find, as already noted in Ref.@30#, that the asymp-
totic behavior at small times is given byW(t)5Rft2/3 with
Rf5R/22/3'2.4.

D. Vertex corrections and Ward identities

As we have seen in the preceding section mode-coupling
theory is equivalent to a self-consistent formulation of the
perturbation series, where all propagator renormalizations
are taken into account, but vertex corrections have been ne-
glected. Nevertheless, there is quite an excellent agreement
of the mode-coupling results with numerical simulations
@28#. It seems that there is some hidden small parameter,
which remains to be identified. In this section we address this
problem and analyze the magnitude of the vertex corrections.

It is known that the KPZ equation is invariant under a
Galilean transformation of the form

h8~x8,t !5h~x81lvt,t !1v•x8, ~3.59!

h̃8~x8,t !5h̃~x81lvt,t !, ~3.60!

corresponding to an infinitesimal tiltv of the surface. This
invariance leads to Ward identities, connecting the two- and
three-point vertex functions@2#, which imply that the nonlin-
earity l is not renormalized, and that there is an exponent
identity x1z52.

Since the Ward identities relate the three-point to the two-
point vertex functions one may hope that they also give some
information on the magnitude of the vertex functions. Re-
cently, it has been shown by Lebedev and L’vov@41# that the
KPZ equation is invariant under the generalized Galilean
transformation

h8~x8,t !5h~x,t !1
]z

]t
•x8, ~3.61!

h̃8~x8,t !5h̃~x,t !, ~3.62!

with x85x2lz, and wherez is an arbitrary function of time
but not of coordinatesx. Since the generating functional for
the vertex functionsG@ h̃,h# is invariant with respect to the
above transformation, one finds the following Ward identity:

E
k
E dtFlk•zH dG

dh~k,t !
h~k,t !1

dG

dh̃~k,t !
h̃~k,t !J

1
dG

dh~k,t !

]z

]t
•

]

]k
d~d!~k!G50. ~3.63!

Taking functional derivatives of the above equation with re-
spect toh̃(2q1 ,2m1) and h(2k1 ,2v1), then taking the
limit h,h̃→0, and recalling the definition of the vertex func-
tions, we obtain the following Ward identity:

FIG. 3. Scaling functionW(t) for the interface width in a sys-
tem of finite sizeL for periodic boundary conditions and free
boundary conditions, respectively. The dashed lines are approxima-
tions for small scaled timest5lCLtL

23/2, W(t)'3.8t1/3 for peri-
odic boundary conditions andW(t)'2.4t1/3 for free boundary con-
ditions.
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iv lim
k→0

]

]k
G1,2~q1 ,m1uk1 ,v1 ;k,v!

5l$q1G1,1~q1 ,m11vuk1 ,v1!

1k1G1,1~q1 ,m1uk1 ,v11v!%. ~3.64!

Similarly, by taking derivatives of Eq.~3.63! with respect to
h˜(2q1 ,2m1) and h̃(2q2 ,2m2), we get

iv lim
k→0

]

]k
G2,1~q1 ,m1 ;q2 ,m2uk,v!

5l$q1G2,0~q1 ,m11v;q2 ,m2u!

1q2G2,0~q1 ,m1 ;q2 ,m21vu!%. ~3.65!

The general Ward identity reads

iv¹kGm,n11~$Qi%u$K i%;k,v!uk50

5l(
j51

m

qjGm,n~$Qi%1vej u$K i%!

1l(
j51

n

k jGm,n~$Qi u$K i%1vej !, ~3.66!

where we have defined $Qi%5q1 ,m1 ; . . . ;qm ,mm ,
$K i%5k1 ,v1 ; . . . ;kn ,vn , and $Qi%1vej5q1 ,m1 ; . . . ;
qj ,m j1v; . . . ;qm ,mm . Inserting the above Ward identities,
Eq. ~3.64! and Eq.~3.65!, into the expression for the vertex
correction, we find

¹kV~K1 ;K !uk505
l

iv
qH 2 iv1n* ~q,m2!2n* ~q,m1!

2
n~q,m1!1n* ~q,m1!

2D~q,m1!

3@D~q,m2!2D~q,m1!#J , ~3.67!

wherem65m6v/2. The first term in the last equation cor-
responds to the bare vertex, which is real. The corrections to
this bare vertex result from the imaginary part of the
frequency-dependent surface tensionn(k,v) in the second
and third terms of Eq.~3.67!. In addition, the renormalized
vertex contains an imaginary part resulting from the real part
of the generalized surface tension and the noise amplitude
D(k,v). Let us discuss the vertex corrections resulting from
the imaginary part of the generalized surface tension. Using
the mode-coupling results from Sec. III C, one can calculate
the real and imaginary parts ofn(k,v), as shown in Fig. 4.
Therefrom one deduces the real part of the vertex correc-
tions:

Re@¹kV~K1 ;K !uk50#1lq52lq Im@ n̂~ m̂2v̂/2!

2 n̂~ m̂1v̂/2!#/v̂, ~3.68!

where m̂5m/l̄nq3/2 and v̂5v/l̄nq3/2. As can be inferred
from Fig. 5 the vertex corrections may be as large as 40% at
certain values of the external frequencies. If we take the
integral over all frequencies as a measure of the vertex cor-
rection, however, we find that it is only of the order of a few
percent or even less.

E. Vertex corrections from the two-loop contributions

In this subsection we study the vertex corrections result-
ing from two-loop diagrams in Lorentzian approximation.
With the ansatzn(q)5n(q,v50)5nLor(l/A2p)qz22 the
mode-coupling equations in Lorentzian approximation read
~note thatz53/2)

nLor
2 5

1

2E2`

1`

dy
1

y1
3/21y2

3/2, ~3.69!

wherey65 1
26y. This givesnLor

2 '1.955. Next we take into
account vertex corrections from the two-loop diagrams. We
have seen in Sec. II C that the two-loop contributions to
n(q,0) can be split into a propagator renormalization and a
vertex correction. The former is already taken into account in

FIG. 4. Scaling function for the real part, Re@ n̂(v̂)#, and imagi-
nary part divided by the scaled frequency, Im@ n̂(v̂)#/v̂, of the
generalized surface tension.

FIG. 5. Real part of the vertex correctionDV versusm̂, where
DV5Im@ n̂(m̂2v̂/2)2 n̂(m̂1v̂/2)#/v̂. The values of the scaling
variablev̂50,1,2,4 are indicated in the graph.
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the self-consistency scheme of mode-coupling theory.
Hence, in Lorentzian approximation one may extend the
mode-coupling approach in the following way:

n~q!5
l2

2 Ep
11V~1!~p/q!

n~q1!q1
2 1n~q2!q2

2 ; ~3.70!

with

V~1!~y!5
2y21

nLor
2 E dx

1/21y1x

@ ỹ1
3/21 ỹ2

3/2#@ ỹ2
3/21y1

3/21uxu3/2#
,

~3.71!

where ỹ65u 126y6xu and y65u 126yu. As can be inferred
from Fig. 6, the vertex correctionsV(1) are not at all small as
compared to the bare term 1. They vary from about
2100% to1100% as a function of the ratio of the external
momentaq andp.

However, by inserting this vertex correction in the ex-
tended mode-coupling equation, Eq.~3.70!, one finds
nLor
2 '2.044, which is merely less than 5% larger than the
value obtained with the bare vertex. In addition, the correc-
tion tends to increase the amplitude ratio calculated in Sec.
III C towards the value obtained from numerical simulations.
This result clearly explains why mode-coupling theory has
been so successful in calculating scaling functions for the
noisy Burgers equation. It still remains a puzzle to us, how-
ever, that the vertex correction itself constitutes such a large
correction to the bare vertex of the order of6100%, while
its effect on the correlation function is much less. Future
investigations may concentrate on the extension of the two-
loop vertex correction to higher orders, e.g., by including all
ladder diagrams to the three-point vertex function, which
may give us further insight in the validity and accuracy of
the fairly simple mode-coupling approach.

IV. SUMMARY AND CONCLUSIONS

In this paper we have investigated the noisy Burgers
equation using dynamical renormalization group and mode-
coupling techniques. The renormalization group results show
that there appears no singular two-loop contribution to the
height-height correlation function. Upon including the two-
loop vertex corrections into the mode-coupling approach we
were able to show that their effect on the result for the cor-
relation function is approximately 5%, whereas the vertex
corrections themselves are quite large. We suppose that this
overestimates the actual vertex correction. In order to go
beyond the two-loop vertex corrections one should possibly
use an additional suitable resummation of the vertex correc-
tion, e.g., write down a ‘‘Bethe-Salpeter’’ type of equation
for the vertices representing all ladder diagrams contributing
to the three-point vertex functions. We leave this problem,
and conceivable further extensions, for future investigations.

As a complementary estimate for the vertex corrections
we have used Ward identities to derive a relation between
certain derivatives of the three-point vertex function and the
renormalized noise amplitude and surface tension. Again,
one finds that the effect of the vertex corrections may be of
the order of a few percent.

Based on the above estimates for the vertex corrections,
we suppose that mode-coupling theory yields very accurate
results for the scaling functions, at least for the~111!-
dimensional KPZ~noisy Burgers! equation. This conclusion
is supported by the close agreement of the mode-coupling
results with those from numerical simulations of finite-size
systems. It remains unclear, however, whether the mode-
coupling approach works as well in the general
(d11)-dimensional case, where the two-loop perturbation
theory corrections do contain singular contributions.
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APPENDIX A: GENERALIZED FLUCTUATION-
DISSIPATION RELATION

In this Appendix we collect several fluctuation-dissipation
theorems~FDT’s!, which are of importance for the dynamics
of systems described by nonlinear Langevin equations.

Let T be the time reversal operation:t→2t. Then de-
tailed balance~time inversion symmetry! implies @42# that

T exp@J t1

t22Ft1
#5exp@J2t2

2t12F2t2
#, ~A1!

whereFt5F@h(t)# is the stationary probability distribution
function and

J t1

t2@h,h̃#5E dxE
t1

t2
dtF h̃~x,t !Dh̃~x,t !2h̃~x,t !

3S ]h~x,t !

]t
2V~h! D G , ~A2!

FIG. 6. Vertex correctionV(1)(y) from two-loop diagrams as a
function of lnuyu. Dashed curve:y,0, dot-dashed curve:y.0. The
solid line represents the averageV̄(1)(y)5@V(1)(y)1V(1)(2y)#/2.
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with

V~h!52D
dF

dh
1

l

2
~¹h!2. ~A3!

Without loss of generality, one can assume that the field
h(x,t) is even or odd under time reversal, that is,

T h5«h, «561. ~A4!

Hereh is odd under time reversal. The stationary distribution
Pst@h#5e2F@h# is characterized by the ‘‘free energy’’

F@h#5
n

2DE dx~¹h!2. ~A5!

The time reversal symmetry implies that

T h̃~ t !52«S h̃~2t !2
dF@h~2t !#

dh~2t ! D . ~A6!

Now one uses the causality property of the response func-
tions, ^h(t1)•••h(tk)h̃( t̃1)•••h̃( t̃ k)&50, if one t̃ j.all t i .
Then, for example,

^h~ t !h̃~0!&50 for t,0. ~A7!

With the time reversal operation and Eq.~A.6! it follows
then from Eq.~A7! for t,0 that

K h~2t !S h̃~0!2
dF@h~0!#

dh~0! D L 50. ~A8!

Upon redefiningt52t, one obtains fort.0

^h~ t !h̃~0!&5Q~ t !K h~ t !
dF@h~0!#

dh~0! L . ~A9!

The same arguments can be repeated for
^h(t1)•••h(tk)h̃( t̃1)& with t̃1.all t j . The result is

^h~ t1!•••h~ tk!h̃~ t̃1!&5Q~ t̃1 ,$t j%!

3K h~ t1!•••h~ tk!
dF@h~ t̃1!#

dh~ t̃1!
L ,

~A10!

whereQ( t̃1 ,$t j%) is an obvious generalization of theQ func-
tion. Note that these generalized FDT’s are for the cumulants
and not for the vertex functions. In particular, we get

G11~k,t !5Q~ t !
nk2

D
G02~k,t !. ~A11!

Further identities can be written down in a completely analo-
gous way@36,43#.

APPENDIX B: TWO-LOOP PERTURBATION THEORY
FOR THE TWO-POINT VERTEX FUNCTIONS

This Appendix comprises the Feynman diagrams to two-
loop order for the~111!-dimensional Kardar-Parisi-Zhang
equation, and the corresponding momentum integrals. The
integrations over the internal frequencies have already been
performed using the residue theorem.

We start with a list of the contributions to two-loop order
to the fully wave-vector- and frequency-dependent two-point
vertex functionG h̃h(q,v). The other nonvanishing vertex
function G h̃ h̃(q,v) can be calculated in a similar fashion
~see Ref.@2#!, or simply be obtained via the fluctuation-
dissipation theorem~2.8!. In writing down the diagrammatic
expansion for the dynamic functional one has to take into
account restrictions which follow from causality. In Sec. II
we have not explicitly included the Jacobian
J @h#5D@h#/D@h#, which depends on the discretization of
the Langevin equation~needed to give a proper definition to
the path integral!. As can be shown quite generally@36#, the
Jacobian cancels the equal-time contractions of the fieldh
and the response fieldh̃. Keeping this in mind~or by choos-
ing a discretization with the Jacobian equal to 1), one can
omit the Jacobian in the dynamic functional. The Feynman
diagrams, which account for the restrictions imposed by cau-
sality, are depicted in Fig. 7. Introducing the abbreviations
q65(q/2)6p, q̄65(q2/2)6k, andq̃65q66k, the corre-
sponding analytical expressions read

G h̃h(q,v)

FIG. 7. Feynman diagrams for the two-point vertex function
G h̃h(q,v) to two-loop order.
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~a!1~b!5 iv1n0q
21

l2D0

2n0
q2E

p

1

iv1n0q1
2 1n0q2

2 , ~B1!

~c!52
l4D0

2

2n0
2 qE

p

q2
3

~ iv1n0q1
2 1n0q2

2 !2
E
k

1

iv1n0q1
2 1n0q̄1

2 1n0q̄2
2
, ~B2!

~d!52
l4D0

2

2n0
2 qE

p

q1q2
2

iv1n0q1
2 1n0q2

2 E dk
1

n0q2
2 1n0q̄1

2 1n0q̄2
2 F 1

2n0q2
2 1

1

iv1n0q1
2 1n0q̄1

2 1n0q̄2
2

3S 11
n0q2

2 1n0q̄1
2 1n0q̄2

2

iv1n0q1
2 1n0q2

2 D G , ~B3!

~e!52
l4D0

2

2n0
2 qE

p

q1q2
2

2n0q2
2 @ iv1n0q1

2 1n0q2
2 #
E
k

1

n0q2
2 1n0q̄1

2 1n0q̄2
2
, ~B4!

~ f!5
l4D0

2

2n0
2 qE

p

q1q2
2

iv1n0q1
2 1n0q2

2 E
k

1

n0q2
2 1n0q̄1

2 1n0q̄2
2 S 1

n0q2
2 1

1

iv1n0q1
2 1n0q̄1

2 1n0q̄2
2 D , ~B5!

~g!52
l4D0

2

n0
2 qE

p

q1

iv1n0q1
2 1n0q2

2 E
k

q̃1k

@n0q2
2 1n0q̃2

2 1n0k
2#@ iv1n0q̃1

2 1n0q̃2
2 #

S 11
2n0q2

2

iv1n0q1
2 1n0q̃2

2 1n0k
2D ,

~B6!

~h!52
l4D0

2

n0
2 qE

p

q2

iv1n0q1
2 1n0q2

2 E
k

q̃1k

@ iv1n0q̃1
2 1n0q̃2

2 #@ iv1n0q1
2 1n0q̃2

2 1n0k
2#
, ~B7!

~ i!52
l4D0

2

n0
2 qE

p

q2

iv1n0q1
2 1n0q2

2 E
k

q̃1q̃2

@ iv1n0q̃1
2 1n0q̃2

2 #@ iv1n0q1
2 1n0q̃2

2 1n0k
2#

2
l4D0

2

n0
2 qE

p

q1

iv1n0q1
2 1n0q2

2 E
k

q̃1q̃2

@n0q2
2 1n0q̃2

2 1n0k
2#@ iv1n0q̃1

2 1n0q̃2
2 #

S 11
2n0q2

2

iv1n0q1
2 1n0q̃2

2 1n0k
2D ,

~B8!

~ j!5
l4D0

2

n0
2 qE

p
q1q2E

k

q̃1

@n0q2
2 1n0q̃2

2 1n0k
2#@ iv1n0q̃1

2 1n0q̃2
2 #@ iv1n0q1

2 1n0q̃2
2 1n0k

2#
. ~B9!

@1# M. Kardar, G. Parisi, and Y.-C. Zhang, Phys. Rev. Lett.56,
889 ~1986!; E. Medina, T. Hwa, M. Kardar, and Y.-C. Zhang,
Phys. Rev. A39, 3053~1989!.

@2# E. Frey and U.C. Ta¨uber, Phys. Rev. E50, 1024~1994!.
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